Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sucrose chloride

Together with sodium, chloride aids in stabilizing the pH of the blood at 7.35 to 7.45, just slightly alkaline. Hydrogen, together with chloride, forms the hydrochloric acid in the gastric juices, which breaks down proteins, collagen, and sucrose. Chloride promotes normal heart function. [Pg.49]

Sensory perception is both quaUtative and quantitative. The taste of sucrose and the smell of linalool are two different kinds of sensory perceptions and each of these sensations can have different intensities. Sweet, bitter, salty, fmity, floral, etc, are different flavor quaUties produced by different chemical compounds the intensity of a particular sensory quaUty is deterrnined by the amount of the stimulus present. The saltiness of a sodium chloride solution becomes more intense if more of the salt is added, but its quaUty does not change. However, if hydrochloric acid is substituted for sodium chloride, the flavor quahty is sour not salty. For this reason, quaUty is substitutive, and quantity, intensity, or magnitude is additive (13). The sensory properties of food are generally compHcated, consisting of many different flavor quaUties at different intensities. The first task of sensory analysis is to identify the component quahties and then to determine their various intensities. [Pg.1]

A persistent idea is that there is a very small number of flavor quaUties or characteristics, called primaries, each detected by a different kind of receptor site in the sensory organ. It is thought that each of these primary sites can be excited independently but that some chemicals can react with more than one site producing the perception of several flavor quaUties simultaneously (12). Sweet, sour, salty, bitter, and umami quaUties are generally accepted as five of the primaries for taste sucrose, hydrochloric acid, sodium chloride, quinine, and glutamate, respectively, are compounds that have these primary tastes. Sucrose is only sweet, quinine is only bitter, etc saccharin, however, is slightly bitter as well as sweet and its Stevens law exponent is 0.8, between that for purely sweet (1.5) and purely bitter (0.6) compounds (34). There is evidence that all compounds with the same primary taste characteristic have the same psychophysical exponent even though they may have different threshold values (24). The flavor of a complex food can be described as a combination of a smaller number of flavor primaries, each with an associated intensity. A flavor may be described as a vector in which the primaries make up the coordinates of the flavor space. [Pg.3]

Trityl Ethers. Treatment of sucrose with four molar equivalents of chlorotriphenylmethyl chloride (trityl chloride) in pyridine gives, after acetylation and chromatography, 6,1, 6 -tri-O-tritylsucrose [35674-14-7] and 6,6 -di-O-tritylsucrose [35674-15-8] in 50 and 30% yield, respectively (16). Conventional acetylation of 6,1, 6 -tri-O-tritylsucrose, followed by detritylation and concomitant C-4 to C-6 acetyl migration using aqueous acetic acid, yields a pentaacetate, which on chlorination using thionyl chloride in pyridine and deacetylation produces 4,l, 6 -trichloro-4,l, 6 -trideoxygalactosucrose [56038-13-2] (sucralose), alow calorie sweetener (17). [Pg.32]

StericaHy hindered silyl ethers such as ferZ-hutyl dimethyl silyl, / fZ-butyldiphenylsilyl, and tricyclohexylsilyl have been proposed as alternatives to trityl ethers. Reaction of sucrose with 3.5 molar equivalents of ferZ-hutyl dimethyl silyl chloride produces the 6,1/6 -tri-O-silyl derivative in good yield (27). [Pg.32]

Sdylation of sucrose with 0.65 equivalents of ferZ-hutyl dimethyl silyl chloride in pyridine gives the corresponding 6 -, 6,6 -di-, and... [Pg.32]

Benzoates. The selective debenzoylation of sucrose octabenzoate [2425-84-5] using isopropylamine in the absence of solvents caused deacylation in the furanose ring to give 2,3,4,6,1/3/6 -hepta- and 2,3,4,6,1/6 -hexa-O-benzoyl-sucroses in 24.1 and 25.4% after 21 and 80 hours, respectively (54). The unambiguous assignment of partially benzoylated sucrose derivatives was accompHshed by specific isotopic labeling techniques (54). Identification of any benzoylated sucrose derivative can thus be achieved by comparison of its C-nmr carbonyl carbon resonances with those of the assigned octabenzoate derivative after benzoylation with 10 atom % benzoyl—carbonyl chloride in pyridine. [Pg.33]

Pivalates. The selective pivaloylation of sucrose with pivaloyl (2,2-dimethylpropionyl) chloride has been thoroughly investigated (56). The reactivity of sucrose toward pivaloylation was shown to be significantly different from other sulfonic or carboxyflc acid chlorides. For example, reaction of sucrose with four molar equivalent of toluene-/)-sulfonyl chloride in pyridine revealed, based on product isolation, the reactivity order ofO-6 0-6 > 0-1 > 0-2 (57). In contrast, a reactivity order for the pivaloylation reaction, under similar reaction conditions, was observed to be 0-6 0-6 > 0-1 > 0-4. [Pg.33]

Direct halogenation of sucrose has also been achieved using a combination of DMF—methanesulfonyl chloride (88), sulfuryl chloride—pyridine (89), carbon tetrachloride—triphenylphosphine—pyridine (90), and thionyl chloride—pyridine—1,1,2-trichloroethane (91). Treatment of sucrose with carbon tetrachloride—triphenylphosphine—pyridine at 70°C for 2 h gave 6,6 -dichloro-6,6 -dideoxysucrose in 92% yield. The greater reactivity of the 6 and 6 primary hydroxyl groups has been associated with a bulky halogenating complex formed from triphenylphosphine dihaUde ((CgH )2P=CX2) and pyridine (90). [Pg.34]

The first displacement reaction at C-2 position in carbohydrates was achieved during the study of sulfuryl chloride reaction with sucrose (92). Treatment of 3,4,6,3, 4, 6 -hexa-0-acetylsucrose 2,l -bis(chlorosulfate) with lithium chloride in hexamethylphosphoric triamide at 80°C for 20 h led to the corresponding 2,l -maimo derivative in 73% yield. [Pg.34]

An economic synthesis of (3) has been patented (74,91). The process iavolves (/) synthesis of sucrose 6-acetate by way of sucrose 4,6-cychc orthoacetate (2), and (2) selective chlorination usiag thionyl chloride—pyridine—1,1,2-trichloroethane, followed by removal of the acetate group. [Pg.35]

The reactive intermediate, (C2H3)2NCH2CH2C1 HCl, which is used to produce cationic starch, is made by the reaction of (C2H3)2NCH2CH20H with thionyl chloride. A synthetic sweetener (qv), sucralose [56038-13-2] is made by the reaction of sucrose or an acetate thereof with thionyl chloride to replace three hydroxy groups by chlorines (187,188). [Pg.141]

Fig. 1. Freeze point depression as a function of solute concentration (1,2). Calcium chloride sucrose (-------), and urea (------) become... Fig. 1. Freeze point depression as a function of solute concentration (1,2). Calcium chloride sucrose (-------), and urea (------) become...
Heats of dehydration per mole of water vapor are (74) decahydrate to pentahydrate, 54.149 kj (12.942 kcal), and decahydrate to tetrahydrate, 54,074 kj (12.924 kcal). Borax stored over a saturated sucrose-sodium sucrose—sodium chloride solution maintains exacdy 10 moles of water and can thus be used as an analytical standard. Commercial borax tends to lose water of crystallisation if stored at high temperature or ia dry air. [Pg.198]

Solutions vaiy greatly in their ability to sustain measurable amounts of supersaturation. With some materials, such as sucrose, it is possible to develop a supersaturation coefficient of 1.4 to 2.0 with little danger of nucleation. With some common inorganic solutions such as sodium chloride in water, the amount of supersaturation which can be generated stably is so small that it is difficult or impossible to measure. [Pg.1655]

Methylfurfural may be prepared by a modification of this method, which is more rapid but gives lower yiddsd A solution of 800 g. of sucrose in i 1. of hot water is allowed to flow slowly into a boiling solution of 500 g. of stannous chloride crystals, 2 kg. of sodium chloride, and 4 1. of 12 per cent sulfuric acid in a 12-I. flask. The aldehyde distils ofl as rapidly as it is formed and is steam-distilled from the original distillate after rendering it alkaline witlr sodium carbonate. The product is isolated by benzene extraction of the second distillate and distillation under reduced pressure. The yield is 27-35 g- (10-13 per cent of the theoretical amount). [Pg.64]

Methylfurfural has been prepared by the distillation of rham-nose with dilute mineral acids and by the reduction of 5-bromo-and 5-chloromethylfurfural with stannous chloride. The above procedure, starting from sucrose, has been published by Rinkes. ... [Pg.64]

A sample of sucrose, Ci2H22On, is contaminated by sodium chloride. When the contaminated sample is burned in a bomb calorimeter, sodium chloride does not burn. What is the percentage of sucrose in the sample if a temperature increase of 1.67°C is observed when 3.000 g of the sample is burned in the calorimeter Sucrose gives off 5.64 X 103kJ/mol when burned. Theheat capacity of the calorimeter is 22.51 kJ/°C. [Pg.224]

Fig. 13.—The effect of chloride salts on sucrose reaction rate. Fig. 13.—The effect of chloride salts on sucrose reaction rate.
The pectin/sucrose gels were characterized as follows (amounts per lOOg gel) 0.3 g AUA, 65% soluble solid substance, 0.01 mol sodium acetate / lactic acid buffer, pH 3.0 (20°C). The metal ions were added as combinations of chlorides according to a mixture design with constant amount of chloride ions (2.5 mmol / lOOg gel). Thus the total amount of metal ions... [Pg.584]

The general criterion for solubility is the rule that like dissolves like . In other words polar solvents dissolve polar and ionic solutes, non-polar solvents dissolve non-polar solutes. In the case of water, this means that ionic compounds such as sodium chloride and polar compounds such as sucrose are soluble, but non-polar compounds such as paraffin wax are not. [Pg.40]

Harrison, Tarr and Hibbert96 investigated the production of levan from sucrose by the action of Bacillus subtilis Cohn and B. mesentericus Trevisan. Nutrient solutions containing 10% carbohydrate, 0.1% peptone, 0.2% disodium hydrogen phosphate and 0.5% potassium chloride were incubated at 37° for six days. Levan formation occurred only with sucrose and raffinose, and not with melezitose, lactose, maltose, D-xylose, D-glucose or D-fructose. It was therefore suggested that only those carbohydrates with a terminal D-fructofuranose residue were satisfactory substrates for levan formation. [Pg.243]


See other pages where Sucrose chloride is mentioned: [Pg.472]    [Pg.472]    [Pg.11]    [Pg.419]    [Pg.386]    [Pg.407]    [Pg.27]    [Pg.32]    [Pg.34]    [Pg.35]    [Pg.36]    [Pg.1889]    [Pg.49]    [Pg.520]    [Pg.732]    [Pg.160]    [Pg.288]    [Pg.461]    [Pg.462]    [Pg.2442]    [Pg.168]    [Pg.335]    [Pg.585]    [Pg.134]    [Pg.228]    [Pg.300]    [Pg.109]    [Pg.476]    [Pg.228]    [Pg.404]   
See also in sourсe #XX -- [ Pg.95 ]

See also in sourсe #XX -- [ Pg.663 , Pg.664 , Pg.665 , Pg.666 , Pg.667 ]

See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Sucrose chloride salts effect

Sucrose reaction with sulfuryl chloride

Sucrose with sulfuryl chloride

Thionyl chloride reaction with sucrose

© 2024 chempedia.info