Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrate high molecular weight

MDA reacts similarly to other aromatic amines under the proper conditions. For example, nitration, bromination, acetylation, and dia2oti2ation (1 3) all give the expected products. Much of the chemistry carried out on MDA takes advantage of the diftmctionality of the molecule in reacting with multiftmctional substrates to produce low and high molecular weight polymers. [Pg.248]

Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]

This difference in reactivity between the different classes of amines explains the difference in the primer performance on polyolefin substrates with ethyl cyanoacrylate-based adhesives [37J. Since primary and secondary amines form low molecular weight species, a weak boundary layer would form first, instead of high molecular weight polymer. Also, the polymer, which does ultimately form, has a lower molecular weight, which would lower adhesives strength [8,9]. [Pg.863]

Enzymes are proteins of high molecular weight and possess exceptionally high catalytic properties. These are important to plant and animal life processes. An enzyme, E, is a protein or protein-like substance with catalytic properties. A substrate, S, is the substance that is chemically transformed at an accelerated rate because of the action of the enzyme on it. Most enzymes are normally named in terms of the reactions they catalyze. In practice, a suffice -ase is added to the substrate on which die enzyme acts. Eor example, die enzyme dial catalyzes die decomposition of urea is urease, the enzyme dial acts on uric acid is uricase, and die enzyme present in die micro-organism dial converts glucose to gluconolactone is glucose oxidase. The diree major types of enzyme reaction are ... [Pg.21]

Another important synthetic method for the reduction of ketones and aldehydes to the corresponding methylene compounds is the Woljf-Kishner reduction. This reaction is carried out under basic conditions, and therefore can be applied for the reduction of acid-sensitive substrates it can thus be regarded as a complementary method. The experimental procedure for the Clemmensen reduction is simpler however for starting materials of high molecular weight the Wolff-Kishner reduction is more successful. [Pg.63]

The choice of solvent is not trivial and, generally, the reaction medium must be a good solvent for both monomers and polymer product. In addition, to obtain high molecular weight, water needs to be removed from the system to avoid hydrolyzing the activated substrate, since hydrolysis reduces the reaction rate and upsets the stoichiometry of the monomers.61 63... [Pg.338]

The high specificity required for the analysis of physiological fluids often necessitates the incorporation of permselective membranes between the sample and the sensor. A typical configuration is presented in Fig. 7, where the membrane system comprises three distinct layers. The outer membrane. A, which encounters the sample solution is indicated by the dashed lines. It most commonly serves to eliminate high molecular weight interferences, such as other enzymes and proteins. The substrate, S, and other small molecules are allowed to enter the enzyme layer, B, which typically consist of a gelatinous material or a porous solid support. The immobilized enzyme catalyzes the conversion of substrate, S, to product, P. The substrate, product or a cofactor may be the species detected electrochemically. In many cases the electrochemical sensor may be prone to interferences and a permselective membrane, C, is required. The response time and sensitivity of the enzyme electrode will depend on the rate of permeation through layers A, B and C the kinetics of enzymatic conversion as well as the charac-... [Pg.62]

Perfluoroalkyl)ethane thiols have been used as precursors to fluorinated surfactants and products for hydro- and oligophobic finishing of substrates such as textiles and leather (1). The synthesis of 2-(perfluoroalkyl)ethane thiol and a byproduct bis-(-2-perfluoroalkylethane)-disulfide (5-10%) has been practiced via the reaction of 2-(perfluoroalkyl)ethane iodide with thiourea to form an isothiuronium salt which is cleaved with alkali or high molecular weight amine as shown in Equation 1 for 2-(perfluorohexyl)ethane iodide (1). [Pg.135]

Since lignins are polymers of phenolics and are major plant constituents with resistance to microbial decomposition, they are the primary source of phenolic units for humic acid synthesis (178, 179). Once transformed, these humic acids become further resistant to microbial attack and can become bound to soils (180) form interactions with other high molecular weight phenolic compounds (ex. lignins, fulvic acids) and with clays (181) and influence the biodegradation of other organic substrates in soils (182, 183). [Pg.315]


See other pages where Substrate high molecular weight is mentioned: [Pg.35]    [Pg.432]    [Pg.104]    [Pg.902]    [Pg.35]    [Pg.432]    [Pg.104]    [Pg.902]    [Pg.427]    [Pg.359]    [Pg.42]    [Pg.383]    [Pg.6]    [Pg.57]    [Pg.469]    [Pg.470]    [Pg.309]    [Pg.334]    [Pg.566]    [Pg.694]    [Pg.760]    [Pg.848]    [Pg.1063]    [Pg.350]    [Pg.385]    [Pg.75]    [Pg.74]    [Pg.76]    [Pg.200]    [Pg.495]    [Pg.1547]    [Pg.309]    [Pg.68]    [Pg.216]    [Pg.240]    [Pg.167]    [Pg.8]    [Pg.601]    [Pg.75]    [Pg.144]    [Pg.171]    [Pg.225]    [Pg.161]    [Pg.313]    [Pg.282]    [Pg.384]   


SEARCH



© 2024 chempedia.info