Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituent Substituted aldehydes, formation

Scheme 2.3 shows reactions of several substituted aldehydes of varying complexity that illustrate aldehyde facial diastereoselectivity in the aldol and Mukaiyama reactions. The stereoselectivity of the new bond formation depends on the effect that reactant substituents have on the detailed structure of the TS. The 3,4-syn stereoselectivity of Entry 1 derives from a Felkin-type acyclic TS. [Pg.97]

The [2+2]-cycloaddition between P ylides and carbonyl compounds to give oxaphosphetanes can be stereogenic. It is stereogenic when the carbanionic C atom of the ylide bears—besides the P atom—two different substituents and when this holds true for the carbonyl group, too. The most important stereogenic oxaphosphetane formations of this type start from monosubstituted ylides Ph3P+—CH—X and from substituted aldehydes R—CH=0 rather than formaldehyde. We will therefore study this case in Figure 9.7. [Pg.355]

Keck has documented a set of examples of chelation-controlled allylations of / -alkoxy-substituted aldehydes such as 117 (Scheme 5.20) [91]. The coupling constants in the H-NMR spectrum of the species generated upon mixing TiCl4 and 117 are consistent with the formation of a chelate 119 in which the cyclohexyl substituent occupies a pseudoaxial position. The allylation of 119 from the diastereoface opposite to the axially dispositioned cyclohexyl group accounts for the observed induction (120/121 = 96 1). The lack of selectivity in the allylation of 118 (122/123 = 1 1.1) is consistent with the relevance of chelation control in the previous example, as TBS ethers generally fail to participate in chelate formation. [Pg.170]

The rate of iodine formation depends on the degree of A"-substitu-tion. Compounds which are unsubstituted on both the iV-atoms (35) and those wdth a single A -substituent (43) liberate instantly the calculated quantity of iodine in the cold. However, the 1,2-disubstituted diaziridines (44) need brief heating with the acid iodine solution they then give 95-100% of the calculated iodine. " This effect of substitution is so well defined that it can be used for a proof of constitution. The diaziridino-triazolidincs (37) prepared from aldehydes, ammonia, and chloramine give complete iodine liberation only on heating. Thus the structure 57 which is isomeric with 37 can be eliminated. ... [Pg.116]

In the presence of catalytic amounts of Pd(0), silicon-substituted vinyloxiranes can rearrange into the corresponding ot-silyl- 3,y-unsaturated aldehydes (Scheme 9.34) [151]. Treatment of 80 with Pd(OAc)2 and P(OPh)3 results in the formation of 7t-allylpalladium complex 81. Bond rotation to give 82, followed by migration of the silyl moiety, affords aldehyde 83, which is trapped in situ to provide the Felkin-Anh product 84. The reaction proceeds with retention of configuration and the ee of the starting material is retained in the product. The size of the silicon substituents is critical for the outcome of the reaction, as is the choice of ligands on palladium. [Pg.340]

A variety of such ternary catalytic systems has been developed for diastereoselective carbon-carbon bond formations (Table). A Cp-substituted vanadium catalyst is superior to the unsubstituted one,3 whereas a reduced species generated from VOCl3 and a co-reductant is an excellent catalyst for the reductive coupling of aromatic aldehydes.4 A trinuclear complex derived from Cp2TiCl2 and MgBr2 is similarly effective for /-selective pinacol coupling.5 The observed /-selectivity may be explained by minimization of steric effects through anti-orientation of the bulky substituents in the intermediate. [Pg.15]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

Alkyltriphenylphosphonium halides are only weakly acidic, and a strong base must be used for deprotonation. Possibilities include organolithium reagents, the anion of dimethyl sulfoxide, and amide ion or substituted amide anions, such as LDA or NaHMDS. The ylides are not normally isolated, so the reaction is carried out either with the carbonyl compound present or with it added immediately after ylide formation. Ylides with nonpolar substituents, e.g., R = H, alkyl, aryl, are quite reactive toward both ketones and aldehydes. Ylides having an a-EWG substituent, such as alkoxycarbonyl or acyl, are less reactive and are called stabilized ylides. [Pg.159]

Nitrosobenzenes react with the carbonyl group of aldehydes to yield hydroxamic acids 73, according to reaction 20. Recently, the reactions between some X-substituted nitrosobenzenes (X = H, p-Me, p-C 1, m-Cl, p-Br) and formaldehyde were reported194 in order to investigate the mechanism of the hydroxamic acid formation. The mechanism reported in Scheme 9 involves a first equilibrium yielding the zwitterionic intermediate 74 which rearranges (by acid catalysis) into hydroxamic acid 75. The presence of a general acid catalysis, the substituent effect (p values of the Hammett equation equal —1.74),... [Pg.450]

To summarize the amides are most suitable for the formation, by ortholithiation, of condensed heterocycles and polycyclic aromatics (in which subsequent rings are formed by intramolecular attack on the amide group). In other cases the removal of the amide group may be problematic, though if carboxylic acids, aldehydes or hydroxymethyl-substituted compounds are required, alternative amide substituents may be used. [Pg.514]

A variety of methods have been developed for the preparation of substituted benzimidazoles. Of these, one of the most traditional methods involves the condensation of an o-phenylenediamine with carboxylic acid or its derivatives. Subsequently, several improved protocols have been developed for the synthesis of benzimidazoles via the condensation of o-phenylenediamines with aldehydes in the presence of acid catalysts under various reaction conditions. However, many of these methods suffer from certain drawbacks, including longer reaction times, unsatisfactory yields, harsh reaction conditions, expensive reagents, tedious work-up procedures, co-occurrence of several side reactions, and poor selectivity. Bismuth triflate provides a handy alternative to the conventional methods. It catalyzes the reaction of mono- and disubstituted aryl 1,2-diamines with aromatic aldehydes bearing either electron-rich or electron-deficient substituents on the aromatic ring in the presence of Bi(OTf)3 (10 mol%) in water, resulting in the formation of benzimidazole [119] (Fig. 29). Furthermore, the reaction also works well with heteroaromatic aldehydes. [Pg.255]


See other pages where Substituent Substituted aldehydes, formation is mentioned: [Pg.13]    [Pg.170]    [Pg.34]    [Pg.461]    [Pg.911]    [Pg.162]    [Pg.383]    [Pg.383]    [Pg.911]    [Pg.34]    [Pg.383]    [Pg.247]    [Pg.17]    [Pg.66]    [Pg.584]    [Pg.618]    [Pg.30]    [Pg.398]    [Pg.110]    [Pg.79]    [Pg.86]    [Pg.223]    [Pg.142]    [Pg.150]    [Pg.140]    [Pg.175]    [Pg.165]    [Pg.93]    [Pg.127]    [Pg.583]    [Pg.457]    [Pg.588]    [Pg.50]    [Pg.662]    [Pg.21]    [Pg.410]    [Pg.496]    [Pg.436]    [Pg.50]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



4-Substituted formation

Aldehydes formation

Aldehydes substitution

Substituents Substitution

Substituted substituents

© 2024 chempedia.info