Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SUBJECTS transition state

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

It is interesting that the molecular structure in the transition state is also subject to a solvent effect. Compared to the gas phase, the solute molecular geometry at the transition state shifts toward the reactant side in aqueous solution the C—N and C—Cl distances... [Pg.433]

The factors that determine whether syn or anti elimination predominates are still subject to investigation. One factor that is believed to be important is whether the base is free or present in an ion pair. The evidence is that an ion pair promotes syn elimination of anionic leaving groups. This effect can be explained by proposing a transition state in which the anion functions as a base and the cation assists in the departure of the leaving group. [Pg.390]

AC is interpreted as the difference in heat capacities between the transition state and the reactants, and it may be a valuable mechanistic tool. Most reported ACp values are for reactions of neutral reactants to products, as in solvolysis reactions of neutral esters or aliphatic halides. " Because of the slight curvature seen in the Arrhenius plots, as exemplified by Fig. 6-2, the interpretation, and even the existence, of AC is a matter of debate. The subject is rather specialized, so we will not explore it deeply, but will outline methods for the estimation of ACp. [Pg.251]

Miller first used Eq. (7-41) to correlate multiple variations, and this approach has more recently been subjected to considerable development. Many cross-interaction constants have been evaluated multiple regression analysis is one technique, but Miller and Dubois et ah discuss other methods. Lee et al. consider Pxy to be a measure of the distance between groups x and y in the transition state... [Pg.332]

The mechanism of the carbo-Diels-Alder reaction has been a subject of controversy with respect to synchronicity or asynchronicity. With acrolein as the dieno-phile complexed to a Lewis acid, one would not expect a synchronous reaction. The C1-C6 and C4—C5 bond lengths in the NC-transition-state structure for the BF3-catalyzed reaction of acrolein with butadiene are calculated to be 2.96 A and 1.932 A, respectively [6]. The asynchronicity of the BF3-catalyzed carbo-Diels-Alder reaction is also apparent from the pyramidalization of the reacting centers C4 and C5 of NC (the short C-C bond) is pyramidalized by 11°, while Cl and C6 (the long C-C bond) are nearly planar. The lowest energy transition-state structure (NC) has the most pronounced asynchronicity, while the highest energy transition-state structure (XT) is more synchronous. [Pg.306]

The experimental side of the subject explores the effects of certain variables on the rate constant, especially temperature and pressure. Their variations provide values of the activation parameters. They are the previously mentioned energy of activation, entropy of activation, and so forth. The chemical interpretations that can be realized from the values of the activation parameters will be explored in general terms, but readers must consult the original literature for information about those chemical systems that particularly interest them. On the theoretical side, there is the tremendously powerful transition state theory (TST). We shall consider its origins and some of its implications. [Pg.155]

Sulfate monoesters can react by dissociative paths, and this is the favored path. Whether such reactions are concerted or involve a very short-lived sulfur trioxide intermediate has been the subject of debate. ° Benkovic and Benkovic reported evidence suggesting that the nucleophile is present (though there is little bond formation) in the transition state for the reaction of amines with p-nitrophenyl sulfate. Alkyl esters of sulfuric or sulfonic acids normally react with C-0 cleavage only when this is disfavored, as in aryl esters, does one see S-0 cleavage. Sulfate diester... [Pg.23]


See other pages where SUBJECTS transition state is mentioned: [Pg.830]    [Pg.11]    [Pg.305]    [Pg.494]    [Pg.515]    [Pg.211]    [Pg.303]    [Pg.384]    [Pg.605]    [Pg.700]    [Pg.3]    [Pg.26]    [Pg.506]    [Pg.250]    [Pg.390]    [Pg.172]    [Pg.291]    [Pg.322]    [Pg.89]    [Pg.151]    [Pg.216]    [Pg.320]    [Pg.618]    [Pg.14]    [Pg.187]    [Pg.466]    [Pg.810]    [Pg.1437]    [Pg.34]    [Pg.163]    [Pg.769]    [Pg.618]    [Pg.264]    [Pg.193]    [Pg.395]    [Pg.21]    [Pg.9]    [Pg.186]    [Pg.390]    [Pg.118]    [Pg.227]    [Pg.125]    [Pg.198]   
See also in sourсe #XX -- [ Pg.745 ]




SEARCH



Subject transition state geometry

Subject transition state theory

Subject transitions

Transition-state structures Subject

© 2024 chempedia.info