Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject temperature-programmed

Thermal analysis helps in measuring the various physical properties of the polymers. In this technique, a polymer sample is subjected to a controlled temperature program in a specific atmosphere and properties are measured as a function of temperature. The controlled temperature program may involve either isothermal or linear rise or fall of temperature. The most common thermoanalytical techniques are (1) differential scanning analysis (DSC), (2) thermomechanical analysis (TMA), and (3) thermogravimetry (TG). [Pg.655]

Dilatometer Basically it is a pyrometer equipped with instruments to study density as a function of temperature and/or time. It can measure the thermal expansion or contraction of solids or liquids. They also study polymerization reactions it can measure the contraction in volume of unsaturated compounds. It basically is a technique in which a dimension of a material under negligible load is measured as a function of temperature while it is subjected to a controlled temperature program. [Pg.635]

Figure 2.27. Temperature programmed desorption (TPD) spectra of carbon monoxide (measured by Ap) as a function of temperature from nickel surfaces (a) Ni(l 11), (b) Ni(l 11) when the initially dosed surface has been subjected to an electron beam (150 pA for 10 minutes over an area of 1 mm2) and (c) a cleaved nickel surface.85 Reprinted with permission from Elsevier Science. Figure 2.27. Temperature programmed desorption (TPD) spectra of carbon monoxide (measured by Ap) as a function of temperature from nickel surfaces (a) Ni(l 11), (b) Ni(l 11) when the initially dosed surface has been subjected to an electron beam (150 pA for 10 minutes over an area of 1 mm2) and (c) a cleaved nickel surface.85 Reprinted with permission from Elsevier Science.
Temperature programmed desorption (TPD) of NH3 adsorbed on the samples was carried out on an Altamira TPD apparatus. NH3 adsorption was performed at 50°C on the sample that had been heat-treated at 120°C in a helium flow. After flushing with helium, the sample was subjected to TPD from 50 to 600°C (AT = 10°C min 1). The evolved NH3, H20 and N2 were monitored by mass spectroscopy by recording the mass signals of m/e = 16, 18 and 28, respectively using a VG Trio-1 mass spectrometer. [Pg.253]

Boylan and Tripp [76] determined hydrocarbons in seawater extracts of crude oil and crude oil fractions. Samples of polluted seawater and the aqueous phases of simulated samples (prepared by agitation of oil-kerosene mixtures and unpolluted seawater to various degrees) were extracted with pentane. Each extract was subjected to gas chromatography on a column (8 ft x 0.06 in) packed with 0.2% of Apiezon L on glass beads (80-100 mesh) and temperatures programmed from 60 °C to 220 °C at 4°C per minute. The components were identified by means of ultraviolet and mass spectra. Polar aromatic compounds in the samples were extracted with methanol-dichlorome-thane (1 3). [Pg.388]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

A technique in which the difference in energy inputs into a substance and a reference material is measured as a function of temperature, while the substance and the reference material are subjected to a controlled temperature program. [Pg.150]

Differential thermal analysis (DTA) is a technique in which the temperature difference between the sample tested and a reference material is measured while both are subjected to the controlled temperature program. Differential scanning calorimetry (DSC) is a technique in which the heat flow difference between the sample and reference material is monitored while both are subjected to the controlled temperature program. Thermogravimetric analysis (TGA) is a technique in which the weight of a sample is monitored during the controlled temperature program. [Pg.424]

A thermochemical method that simultaneously measures differences in heat flow into a test substance and a reference substance (whose thermochemical properties are already well characterized) as both are subjected to programmed temperature ramping of the otherwise thermally isolated sample holder. The advantage of differential scanning calorimetry is a kinetic technique that allows one to record differences in heat absorption directly rather than measuring the total heat evolved/... [Pg.195]

In DSC the sample is subjected to a controlled temperature program, usually a temperature scan, and the heat flow to or from the sample is monitored in comparison to an inert reference [75,76], The resulting curves — which show the phase transitions in the monitored temperature range, such as crystallization, melting, or polymorphic transitions — can be evaluated with regard to phase transition temperatures and transition enthalpy. DSC is thus a convenient method to confirm the presence of solid lipid particles via the detection of a melting transition. DSC recrystaUization studies give indications of whether the dispersed material of interest is likely to pose recrystallization problems and what kind of thermal procedure may be used to ensure solidification [62-65,68,77]. [Pg.9]

The ozonides of choline and ethanolamine phosphatides subjected to reduction with PhsP yield the corresponding core aldehydes. After hydrolysis with phospholipase C to eliminate the polar group and silylation with trimethylsilyl chloride, the core aldehydes can be determined by GLC-FID using temperature programming to high temperatures . ... [Pg.719]

Complementary techniques in catalytic chemistry involve temperature programmed (TP) methods where a reaction is investigated by subjecting the catalyst immersed in a reactant, to a temperature ramp. Rates of both reduction and oxidation can be studied. The extent of the catalytic reaction is then plotted as a function of temperature. In TP-desorption (TPD), the desorbed material is detected and plotted against temperature. [Pg.79]

The Nomenclature Committee of the International Confederation for Thermal Analysis (ICTA) has defined DSC as a technique in which the difference in energy inputs into a substance and a reference material is measured as a function of temperature whilst the substance and reference material are subjected to a controlled temperature program. Two modes, power compensation DSC and heat flux DSC, can be distinguished depending on the method of measurement used1 . The relationship of these techniques to classical differential thermal analysis (DTA) is discussed by MacKenzie2). [Pg.112]

Figure 10.10 Correlation between the crystallizability of polycyclooctene and its crosslinking level. A mixture of polycyclooctene and dicumyl peroxide (DCP 3% w/w) was subjected to the temperature program shown in (a). The sample is heated at 130° fort minutes (10 minutes in this example) for crosslinking, (b) The... Figure 10.10 Correlation between the crystallizability of polycyclooctene and its crosslinking level. A mixture of polycyclooctene and dicumyl peroxide (DCP 3% w/w) was subjected to the temperature program shown in (a). The sample is heated at 130° fort minutes (10 minutes in this example) for crosslinking, (b) The...
In the last decade, a number of publications has been devoted to this subject. These studies are either based on spectroscopic techniques (IR, NMR) or on desorption techniques (temperature programmed desorption of pyridine and water). In all of these models the distinction between free and bridged silanols, trapped water and intraglobular hydroxyls is the key problem. [Pg.93]

Thermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature when the sample is subjected to a controlled temperature program. Single techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), dielectric thermal analysis, etc., provide important information on the thermal behaviour of materials. However, for polymer characterisation, for instance in case of degradation, further analysis is required, particularly because all of the techniques listed above mainly describe materials only from a physical point of view. A hyphenated thermal analyser is a powerful tool to yield the much-needed additional chemical information. In this paper we will concentrate on simultaneous thermogravimetric techniques. [Pg.1]

The development of thermal analysis methods in materials research has led to a plethora of new methodologies since the elaboration of the first thermal method by by Le Chatelier and Robert-Austen [16,86], Thermal analysis consists of a group of techniques in which a physical property of a material is measured as a function of temperature at the same time when the substance is subjected to a controlled increase, or in some cases, decrease of temperature. Temperature-programmed techniques, such as DTA [87-89], TGA [87], DSC [53,90], TPR [91,92], and TPD [93-96], contribute to perform a more complete characterization of materials. [Pg.179]


See other pages where Subject temperature-programmed is mentioned: [Pg.113]    [Pg.249]    [Pg.115]    [Pg.291]    [Pg.682]    [Pg.113]    [Pg.528]    [Pg.229]    [Pg.62]    [Pg.424]    [Pg.171]    [Pg.186]    [Pg.190]    [Pg.300]    [Pg.351]    [Pg.27]    [Pg.253]    [Pg.367]    [Pg.64]    [Pg.356]    [Pg.182]    [Pg.362]    [Pg.137]    [Pg.507]   


SEARCH



Temperature 576 Subject

Temperature program

Temperature programmed

Temperature programming

© 2024 chempedia.info