Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium Subject

CO oxidation, an important step in automotive exhaust catalysis, is relatively simple and has been the subject of numerous fundamental studies. The reaction is catalyzed by noble metals such as platinum, palladium, rhodium, iridium, and even by gold, provided the gold particles are very small. We will assume that the oxidation on such catalysts proceeds through a mechanism in which adsorbed CO, O and CO2 are equilibrated with the gas phase, i.e. that we can use the quasi-equilibrium approximation. [Pg.66]

The fourth chapter gives a comprehensive review about catalyzed hydroamina-tions of carbon carbon multiple bond systems from the beginning of this century to the state-of-the-art today. As was mentioned above, the direct - and whenever possible stereoselective - addition of amines to unsaturated hydrocarbons is one of the shortest routes to produce (chiral) amines. Provided that a catalyst of sufficient activity and stabihty can be found, this heterofunctionalization reaction could compete with classical substitution chemistry and is of high industrial interest. As the authors J. J. Bmnet and D. Neibecker show in their contribution, almost any transition metal salt has been subjected to this reaction and numerous reaction conditions were tested. However, although considerable progress has been made and enantios-electivites of 95% could be reached, all catalytic systems known to date suffer from low activity (TOP < 500 h ) or/and low stability. The most effective systems are represented by some iridium phosphine or cyclopentadienyl samarium complexes. [Pg.289]

Precious metals reclamation Precious metals reclamation is the recycling and recovery of precious metals (i.e., gold, silver, platinum, palladium, iridium, osmium, rhodium, and ruthenium) from hazardous waste. Because U.S. EPA found that these materials will be handled protectively as valuable commodities with significant economic value, generators, transporters, and storers of such recyclable materials are subject to reduced requirements. [Pg.441]

A remarkable feature of iridium enantioselective hydrogenation is the promotion of the reaction by large non-coordinating anions [73]. This has been the subject of considerable activity (anticipated in an earlier study by Osborn and coworkers) on the effects of the counterion in Rh enantioselective hydrogenation [74]. The iridium chemistry was motivated by initial synthetic limitations. With PFg as counterion to the ligated Ir cation, the reaction ceases after a limited number of turnovers because of catalyst deactivation. The mechanism of... [Pg.1097]

The synthesis of jS-hydoxy-a-amino acids is important since these compounds are incorporated into the backbone of a wide range of antibiotics and cyclopeptides such as vancomycins. These highly functional compounds are also subject to dynamic kinetic resolution (DKR) processes, as the stereocenter already present in the substrate epimerizes under the reaction conditions and hence total conversions into single enantiomers are possible. These transformations can be iy -selective ° for N-protected derivatives as shown in Figure 1.27 when using a mthenium-BlNAP catalyzed system and anfi-selective when the jS-keto-a-amino acid hydrochloride salts are reduced by the iridium-MeOBlPHEP catalyst as shown in Figure 1.28. One drawback is that both these reductions use 100 atm hydrogen pressure. [Pg.15]

In (1) the electrolytic process, a nickel of 99.9% purity is produced, along with slimes which may contain gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and cobalt, which are subject to further refining and recovery. In (2) the Mond process, the nickel oxide is combined with carbon monoxide to form nickel carbonyl gas, Ni(CO)4. The impurities, including cobalt, are left as a solid residue. Upon fuitlier heating of the gas to about 180°C, the nickel carbonyl is decomposed, the freed nickel condensing on nickel shot and the carbon monoxide recycled. The Mond process also makes a nickel of 99.9% purity. [Pg.1071]

A number of silyl enol ethers of acyl silanes have been produced from alkenes by subjection to 50 atmospheres of carbon monoxide in the presence of 0.1 equivalents of trialkylsilane and 2 mol% of an iridium catalyst (Scheme 26)102. Hydrolysis to the acyl silanes was achieved using hydrochloric acid-acetone. [Pg.1616]

Further restrictions to the scope of the present article concern certain molecules which can in one or more of their canonical forms be represented as carbenes, e.g. carbon monoxide such stable molecules, which do not normally show carbenoid reactivity, will not be considered. Nor will there be any discussion of so-called transition metal-carbene complexes (see, for example, Fischer and Maasbol, 1964 Mills and Redhouse, 1968 Fischer and Riedel, 1968). Carbenes in these complexes appear to be analogous to carbon monoxide in transition-metal carbonyls. Carbenoid reactivity has been observed only in the case of certain iridium (Mango and Dvoretzky, 1966) and iron complexes (Jolly and Pettit, 1966), but detailed examination of the nature of the actual reactive intermediate, that is to say, whether the complexes react as such or first decompose to give free carbenes, has not yet been reported. A chromium-carbene complex has been suggested as a transient intermediate in the reduction of gfem-dihalides by chromium(II) sulphate because of structural effects on the reaction rate and because of the structure of the reaction products, particularly in the presence of unsaturated compounds (Castro and Kray, 1966). The subject of carbene-metal complexes reappears in Section IIIB. [Pg.156]

Baylis-Hillman adducts such as 55 and 56 derived from 2-nitrobenzaldehydes were shown to function as useful precursors to functionalized (1H)-quinol-2-ones and quinolines. Treatment of 55 and 56 with iron and acetic acid at 110 °C afforded 57 and 58, respectively <02T3693>. A variety of other cyclization reactions utilized in the preparation of the quinoline scaffold were also reported. An iridium-catalyzed oxidative cyclization of 3-(2-aminophenyl)propanols afforded 1,2,3,4-tetrahydroquinolines <02OL2691>. The intramolecular cyclization of aryl radicals to prepare pyrrolo[3,2-c]quinolines was studied <02T1453>. Additionally, photocyclization reactions of /rans-o-aminocinnamoyl derivatives were reported to provide 2-quinolones and quinolines <02JHC61>. Enolizable quinone and mono- and diimide intermediates were shown to provide quinolines via a thermal 6jt-electrocyclization <02OL4265>. Quinoline derivatives were also prepared from nitrogen-tethered 2-methoxyphenols. The corresponding 2-methoxyphenols were subjected to a iodine(III)-mediated acetoxylation which was followed by an intramolecular Michael addition to afford the quinoline OAc O... [Pg.292]

Tanaka has recently reviewed the hydrogenation of ketones with an emphasis on the mechanistic aspects of the reaction.233 Numerous references related to this subject can be found in his article. Deuteration of cyclohexanones and an application of NMR spectroscopy to the analysis of deuterated products have revealed that on ruthenium, osmium, iridium, and platinum, deuterium is simply added to adsorbed ketones to give the corresponding alcohols deuterated on the Cl carbon, without any deuterium atom at the C2 and C6 positions, while over palladium and rhodium the C2 and C6 positions are also deuterated.234 A distinct difference between rhodium and palladium is that on rhodium deuterium is incorporated beyond the C2 and C6 positions whereas on palladium the distribution of deuterium is limited to the C2 and C6 carbons.234,235 From these results, together with those on the deuteration of adamantanone,236 it has been concluded that a Tt-oxaallyl species is formed on palladium while deuterium may be propagated by an a, 3 process237 on rhodium via a staggered a, 3-diadsorbed species. [Pg.218]

Indium is usually alloyed with platinum in order to increase its hardness, although it reduces its ductility. The presence of iridium in platinum crucibles renders them subject to proportionately greater losses on heating at temperatures above 900° C. Below this temperature, however, and up to a content of at least 8 per cent, of iridium the loss on heating is negligible.7... [Pg.280]

A 100-ml round bottomed flask containing 50 ml of glycerol was treated with the Step 1 product (1.0 mmol) and the iridium acetylacetone complex (0.2 mmol). The mixture was heated for 18 hours and then cooled to ambient temperature and poured into 300 ml of 1M HCl. The resulting precipitate was isolated, washed with water, and dissolved in chloroform and filtered. The material was subjected to Soxhlet extraction with acetone for 24 hours, and 0.50 g of a yellow powder was isolated. The product had a Mn of 13,000 daltons with a polydis-persity of 2.1. [Pg.428]


See other pages where Iridium Subject is mentioned: [Pg.129]    [Pg.29]    [Pg.558]    [Pg.653]    [Pg.455]    [Pg.92]    [Pg.398]    [Pg.697]    [Pg.480]    [Pg.7]    [Pg.125]    [Pg.121]    [Pg.140]    [Pg.315]    [Pg.296]    [Pg.201]    [Pg.355]    [Pg.264]    [Pg.1618]    [Pg.27]    [Pg.445]    [Pg.717]    [Pg.32]    [Pg.1197]    [Pg.39]    [Pg.1115]    [Pg.211]    [Pg.47]    [Pg.310]    [Pg.46]    [Pg.469]    [Pg.236]    [Pg.238]    [Pg.242]    [Pg.264]    [Pg.1130]    [Pg.1431]    [Pg.282]    [Pg.500]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Phosphine, iridium complex Subject

© 2024 chempedia.info