Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions Subject

The reader will recognize the heterogeneity of the subject — carbanion rearrangements are not limited by rules especially if one includes carbanion radicals. This, in turn, is responsible for the richness of the chemistry associated with the topic. Because of the intensive world-wide use and investigation of carbanions and their rearrangements, it is foreseeable that this field will remain an active one in the future. [Pg.50]

There are at least two mechanisms available for aziridine cis-trans isomerism. The first is base-catalyzed and proceeds via an intermediate carbanion (235). The second mechanism can be either thermally or photochemically initiated and proceeds by way of an intermediate azomethine ylide. The absence of a catalytic effect and interception of the 1,3-dipole intermediate provide support for this route. A variety of aziridinyl ketones have been found to undergo equilibration when subjected to base-catalyzed conditions (65JA1050). In most of these cases the cis isomer is more stable than the trans. Base-catalyzed isotope exchange has also been observed in at least one molecule which lacks a stabilizing carbonyl group (72TL3591). [Pg.72]

This chapter describes the chemical behavior of a-sulfinyl and a-sulfonyl carbanions. The stereoelectronic effects of these sulfur-containing groups have been the subject of much controversy for more than a decade which has now gradually settled down. Meanwhile, the special features of the chemical behavior of these groups have been utilized for syntheses of thousands of useful organic substances. This chapter deals with the... [Pg.583]

Corey and Chaykovsky had discovered that dimethyl sulfoxide is converted to methyl-sulfinyl carbanion upon treatment with sodium hydride114 and that this conjugate base of DMSO reacts with various electrophiles115. This finding has opened up various reactions with a-sulfmyl carbanions derived from sulfoxides, since the sulfinyl function can be removed either by thermolysis or by subjecting the compound to reductive desulfurization. Thus a-sulfmyl carbanions have become versatile synthetically useful reagents. [Pg.606]

Since a carbanion is what remains when a positive species is removed from a carbon atom, the subject of carbanion structure and stability (Chapter 5) is inevitably related to the material in this chapter. So is the subject of very weak acids and very strong bases (Chapter 8), because the weakest acids are those in which the hydrogen is bonded to carbon. [Pg.759]

The oxidation potential of carbanions, ox> or the reduction potential of carbocations, red> could be a practical scale of stability as defined by (3). These potentials can be measured by voltammetry, although the scale is subject to assumptions regarding elimination of the diffusional potential and solvation effects. [Pg.178]

Nucleophilic Substitution of xi-Allyl Palladium Complexes. TT-Allyl palladium species are subject to a number of useful reactions that result in allylation of nucleophiles.114 The reaction can be applied to carbon-carbon bond formation using relatively stable carbanions, such as those derived from malonate esters and (3-sulfonyl esters.115 The TT-allyl complexes are usually generated in situ by reaction of an allylic acetate with a catalytic amount of fefrafcz s-(triphenylphosphine)palladium... [Pg.712]

Aldol addition and related reactions of enolates and enolate equivalents are the subject of the first part of Chapter 2. These reactions provide powerful methods for controlling the stereochemistry in reactions that form hydroxyl- and methyl-substituted structures, such as those found in many antibiotics. We will see how the choice of the nucleophile, the other reagents (such as Lewis acids), and adjustment of reaction conditions can be used to control stereochemistry. We discuss the role of open, cyclic, and chelated transition structures in determining stereochemistry, and will also see how chiral auxiliaries and chiral catalysts can control the enantiose-lectivity of these reactions. Intramolecular aldol reactions, including the Robinson annulation are discussed. Other reactions included in Chapter 2 include Mannich, carbon acylation, and olefination reactions. The reactivity of other carbon nucleophiles including phosphonium ylides, phosphonate carbanions, sulfone anions, sulfonium ylides, and sulfoxonium ylides are also considered. [Pg.1334]

Prototropic interconversions have been the subject of much detailed study, as they lend themselves particularly well to investigation by deuterium labelling, both in solvent and substrate, and by charting the stereochemical fate of optically active substrates having a chiral centre at the site of proton departure. Possible limiting mechanisms (cf. SNl/SN2) are those (a) in which proton removal and proton acceptance (from the solvent) are separate operations, and a carbanion intermediate is involved, i.e. an intermolecular pathway and (b) in which one and the same proton is transferred intramolecularly ... [Pg.278]

Volume 75 concludes with six procedures for the preparation of valuable building blocks. The first, 6,7-DIHYDROCYCLOPENTA-l,3-DIOXIN-5(4H)-ONE, serves as an effective /3-keto vinyl cation equivalent when subjected to reductive and alkylative 1,3-carbonyl transpositions. 3-CYCLOPENTENE-l-CARBOXYLIC ACID, the second procedure in this series, is prepared via the reaction of dimethyl malonate and cis-l,4-dichloro-2-butene, followed by hydrolysis and decarboxylation. The use of tetrahaloarenes as diaryne equivalents for the potential construction of molecular belts, collars, and strips is demonstrated with the preparation of anti- and syn-l,4,5,8-TETRAHYDROANTHRACENE 1,4 5,8-DIEPOXIDES. Also of potential interest to the organic materials community is 8,8-DICYANOHEPTAFULVENE, prepared by the condensation of cycloheptatrienylium tetrafluoroborate with bromomalononitrile. The preparation of 2-PHENYL-l-PYRROLINE, an important heterocycle for the synthesis of a variety of alkaloids and pyrroloisoquinoline antidepressants, illustrates the utility of the inexpensive N-vinylpyrrolidin-2-one as an effective 3-aminopropyl carbanion equivalent. The final preparation in Volume 75, cis-4a(S), 8a(R)-PERHYDRO-6(2H)-ISOQUINOLINONES, il lustrates the conversion of quinine via oxidative degradation to meroquinene esters that are subsequently cyclized to N-acylated cis-perhydroisoquinolones and as such represent attractive building blocks now readily available in the pool of chiral substrates. [Pg.140]

Enantiocontrol of carbanion reactions of organolithium reagents has been the subject of a short review. ... [Pg.368]

Since the basic or carbanion intermediate can continue to go to product by Steps 2 and 3, we have a chain reaction which is consistent with the rapid isomerizations which may be obtained using these catalysts. This mechanistic interpretation was proposed in one of the first papers published on this subject (5) it and similar interpretations have been very helpful in bringing about an understanding of base-catalyzed reactions. The chain-reaction sequence may be terminated by reaction with a formation of a material which is not basic enough to metallate the olefin. Such compounds may be polyunsaturated hydrocarbons which may be formed by elimination of hydride ions from a carbanion. [Pg.119]

Nitroso compounds are formed during the addition of nitrous oxide," " dinitrogen trioxide, and nitrosyl halides to alkenes, and in some cases, from incomplete oxidation of amines with peroxyacids like peroxyacetic acid. Quenching of carbanions with nitrosyl halides is also a route to nitroso compounds. A full discussion on this subject is beyond the scope of this work and so the readers are directed to the work of Boyer. ... [Pg.24]

Ring and substituent carbanions situated not only a-, but also /3- and y-to unsaturated (sp ) heterocyclic nitrogen are discussed. Some of the heterocyclic systems mentioned here have also been individually reviewed elsewhere, and in these cases the present work concentrates on more recent aspects. However, earlier work is still discussed where it is felt appropriate or necessary, in order to provide a unified coverage of the subject. The greatest emphasis is placed on methods for overcoming the reluctance often shown by nitrogen heterocycles toward carbanion formation, and the direction of metalation to specific sites where more than one is available. [Pg.158]

Organolithium reagents in which the carbanion is delocalized are less subject to competing electron-transfer processes. Allyllithium and benzyllithium reagents can be alkylated by secondary alkyl bromides, and a high degree of inversion of configuration is observed.65... [Pg.445]

Electrophilic fluorination is the process by which fluorine is delivered to an electron-donating reactant, such as an alkene, aromatic ring or carbanion, by a formal positive-fluorine reagent to form a carbon-fluorine covalent bond. These reactions are fast and have proven extremely valuable for some important fluorine-18-labelled radiopharmaceuticals. Over the years several reviews on electrophilic fluorination were written. The reader is encouraged to seek out these works for greater detail on the subject [7,68-70]. [Pg.14]


See other pages where Carbanions Subject is mentioned: [Pg.697]    [Pg.202]    [Pg.337]    [Pg.257]    [Pg.144]    [Pg.150]    [Pg.1121]    [Pg.17]    [Pg.163]    [Pg.295]    [Pg.153]    [Pg.299]    [Pg.339]    [Pg.88]    [Pg.337]    [Pg.295]    [Pg.337]    [Pg.872]    [Pg.1111]    [Pg.276]    [Pg.42]    [Pg.157]    [Pg.158]    [Pg.157]    [Pg.203]    [Pg.70]    [Pg.112]    [Pg.362]    [Pg.956]    [Pg.599]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.5 , Pg.8 , Pg.8 , Pg.12 ]




SEARCH



Subject phosphonate carbanions

© 2024 chempedia.info