Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject acrylates

Acrylic Polymers. Although considerable information on the plasticization of acryUc resins is scattered throughout journal and patent hterature, the subject is compHcated by the fact that acryUc resins constitute a large family of polymers rather than a single polymeric species. An infinite variation in physical properties may be obtained through copolymerization of two or more acryUc monomers selected from the available esters of acryUc and methacryhc acid (30) (see Acrylic esterpolya rs Methacrylic acid and derivatives). [Pg.129]

Low temperatures can cause a phase separation in stabilized solutions in which case one phase can become deficient in stabilizer and subject to runaway reactions. Acrylic acid can crystallize out of stabilized solution, and subsequent thawing of these essentially pure acrylic acid crystals can initiate runaway reactions, often with severe consequences. Thawing of crystallized (frozen) materials needs to be accomplished using established procedures in thaw boxes or similar devices. If established procedures are not available, a safety review needs to be conducted and a procedure developed prior to thawing the material. [Pg.107]

Example 2.22 A certain grade of acrylic has a Kc value of 1.6 MN and the fatigue crack growth data as shown in Fig. 2.77. If a moulding in this material is subjected to a stress cycle which varies from 0 to 15 MN/m, estimate the maximum internal flaw size which can be tolerated if the fatigue endurance is to be at least 1(P cycles. [Pg.147]

Radical induced grafting may be carried out in solution, in the melt phase,292 29 or as a solid state process.296 This section will focus on melt phase grafting to polyolefin substrates but many of the considerations are generic. The direct grafting of monomers onto polymers, in particular polyolefins, in the melt phase by reactive extrusion has been widely studied. Most recently, the subject has been reviewed by Moad1 9 and by Russell.292 More details on reactive extrusion as a technique can be found in volumes edited by Xanthos," A1 Malaika and Baker et a 21 7 The process most often involves combining a frcc-radical initiator (most commonly a peroxide) and a monomer or macromonomer with the polyolefin as they are conveyed through the extruder. Monomers commonly used in this context include MAII (Section 7.6.4.1), maleimidc derivatives and malcate esters (Section 7.6.4.2), (meth)acrylic acid and (meth)acrylate esters (Section 7.6.43), S, AMS and derivatives (Section 7.6.4.4), vinylsilancs (Section 7.6.4.5) and vinyl oxazolines (Section 7.6.4.6). [Pg.390]

The cycloadducts formed from the Diels-Alder reaction of 3-amino-5-chloro-2(17/)-pyrazinones with methyl acrylate in toluene are subject to two alternative modes of ring transformation yielding either methyl 6-cyano-l,2-dihydro-2-oxo-4-pyridinecarboxylates or the corresponding 3-amino-6-cyano-l,2,5,6-tetrahydro-2-oxo-4-pyridinecarboxylates. From the latter compounds, 3-amino-2-pyridones can be generated through subsequent loss of HCN <96 JOC(61)304>. Synthesis of 3-spirocyclopropane-4-pyridone and furo[2,3-c]pyridine derivatives can be achieved by the thermal rearrangement of nitrone and nitrile oxide cycloadducts of bicyclopropylidene <96JCX (61)1665>. [Pg.224]

Methyl acrylate (94.7 mg, 1.1 mmol) is added dropwise at room temperature to a suspension of morphinolone 132 (253 mg, 1 mmol), CsF (132 mg, 1 mmol), and Si(OMe)4 58 (150 pL) under argon. After stirring for 1 h the reaction mixture is subjected to flash chromatography on silica gel (eluent petroleum ether-ethyl acetate, 8 2) to afford a 1 1 mixture of isomers 133 (82% yield) as a colorless oil [68] (Scheme 3.18). [Pg.37]

The conformations adopted by polyelectrolytes under different conditions in aqueous solution have been the subject of much study. It is known, for example, that at low charge densities or at high ionic strengths polyelectrolytes have more or less randomly coiled conformations. As neutralization proceeds, with concomitant increase in charge density, so the polyelectrolyte chain uncoils due to electrostatic repulsion. Eventually at full neutralization such molecules have conformations that are essentially rod-like (Kitano et al., 1980). This rod-like conformation for poly(acrylic acid) neutralized with sodium hydroxide in aqueous solution is not due to an increase in stiffness of the polymer, but to an increase in the so-called excluded volume, i.e. that region around an individual polymer molecule that cannot be entered by another molecule. The excluded volume itself increases due to an increase in electrostatic charge density (Kitano et al., 1980). [Pg.46]

Water occurs in glass-ionomer and related cements in at least two different states (Wilson McLean, 1988 Prosser Wilson, 1979). These states have been classified as evaporable and non-evaporable, depending on whether the water can be removed by vacuum desiccation over silica gel or whether it remains firmly bound in the cement when subjected to such treatment (Wilson Crisp, 1975). The alternative descriptions loosely bound and tightly bound have also been applied to these different states of water combination. In the glass-poly(acrylic acid) system the evaporable water is up to 5 % by weight of the total cement, while the bound water is 18-28 % (Prosser Wilson, 1979). This amount of tightly bound water is equivalent to five or six molecules of water for each acid group and associated metal cation. Hence at least ten molecules of water are involved in the hydration of each coordinated metal ion at a carboxylate site. [Pg.49]

In their original form these cements came as a zinc oxide powder and a concentrated solution of poly(acrylic acid) (Wilson, 1975b). Since then they have been subject to a number of chemical modifications. [Pg.103]

Compared with the experimental values for which was noted a high level of measurement error, a level of agreement was found that is not worse than the disparities found for a lot of compounds, which were the subject of independent measurement. Note in particular the good estimates obtained with two compounds that have relatively complex structures, such as styrene oxide and glycidyl acrylate. Nevertheless, there are two estimates that seem sufficiently different from the experimental values to require explanation. [Pg.80]

Acrylic resins (Perspex, PMMA, Paraloid) -1930 Varnishes, adhesives, glazing, sculptures, paint media Sensitivity to sunlight. Methacrylates are subjected to bond cleavage. Acrylates undergo cross linking reactions... [Pg.27]

The vinyl triflate of Komfeld s ketone has been subjected to Heck reactions with methyl acrylate, methyl methacrylate, and methyl 3-(Af-rerf-butoxycarbonyl-lV-methyl)amino-2-methylenepropionate leading to a formal synthesis of lysergic acid [259]. A similar Heck reaction between l-(phenylsulfonyl)indol-5-yl triflate and dehydroalanine methyl ester was described by this research group [260]. Chloropyrazines undergo Heck couplings with both indole and 1-tosylindole, and these reactions are discussed in the pyrazine Chapter [261], Rajeswaran and Srinivasan described an interesting arylation of bromomethyl indole 229 with arenes [262]. Subsequent desulfurization and hydrolysis furnishes 2-arylmethylindoles 230. Bis-indole 231 was also prepared in this study. [Pg.126]


See other pages where Subject acrylates is mentioned: [Pg.146]    [Pg.164]    [Pg.186]    [Pg.427]    [Pg.472]    [Pg.547]    [Pg.178]    [Pg.257]    [Pg.105]    [Pg.495]    [Pg.698]    [Pg.113]    [Pg.269]    [Pg.21]    [Pg.259]    [Pg.260]    [Pg.313]    [Pg.205]    [Pg.234]    [Pg.459]    [Pg.138]    [Pg.35]    [Pg.134]    [Pg.108]    [Pg.415]    [Pg.179]    [Pg.532]    [Pg.993]    [Pg.34]    [Pg.33]    [Pg.315]    [Pg.508]    [Pg.57]    [Pg.105]    [Pg.676]    [Pg.22]    [Pg.276]    [Pg.292]    [Pg.188]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Acrylic acid, 3-aroylsynthesis Subject

Ethylene-methyl acrylate Subject

Methyl acrylate Subject

© 2024 chempedia.info