Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene ATRP

ATRP has been widely applied to the polymerization of styrene [2]. Nonetheless, ATRP owes most of its success to the large compatibility with many different monomers [6d], such as acrylates, methacrylates, (meth)acrylamides and acrylonitrile, which readily made this technique available for the production of several new block copolymers (see Table 6.2). Even though the majority of the work has been done with copper as transition metal, styrene ATRP has been carried out using Fe-, Ru-, Ni-, Pd- and Co-based systems [6d]. Note that ATRP does not require the high reaction temperature typical of NMP and this is also part of the success of this polymerization technique. Different ligands have been used to solubilize the copper atom (see Scheme 3) and it has been noticed that they not only make the copper ready for the reaction but can also modify the reactivity of the metal towards both the activation and deactivation reactions. Actually, the presence in the system of a metal, the need for complex ligands to solubilize them and the deep color typically imparted by this... [Pg.117]

Thus, direct determination by EPR of coppa Il) species was reported by Matyjaszewski and coworkers [139] in the case of styrene ATRP. The polymerization proceeds by monomer addition to free radicals reversibly generated by an atom transfer process from dormant polymer chains with halide end-groups. In these reactions, a small amount of copper(II) species was used as a deactivator which moderates rates and keeps low polydispersity. An example of time-dependent EPR signals of copper species in the ATRP of styrene in toluene, initiated by 1-phenylethyl bromide (styrene/l-phenylethyl bromide/CuBr/ dNbipy=l(X)/l/l/2) at 110°C is shown in Figure 10.7 [139]. [Pg.213]

Lutz and Matyjaszewski [18] have followed the evolution of the bromine end functionality during the bulk ATRP of styrene, in the presence of the CuBr/4,4 -di-(5-nonyl)-2,2 -bipyridine catalyst. The retention of the bromide chain-end functionality was monitored through the withdrawal of aliquots at given times from the polymerization mixture and their analysis by H NMR (600 MHz). A decrease in the functionality with conversion was observed, significant at high monomer conversion (90%). The experimental data allowed, by comparison with a kinetic model of styrene ATRP, better understanding of the side reactions that led to the loss in catalyst functionality and helped in the design of the most suitable reaction conditions in order to optimize the reaction kinetics and end-product properties. [Pg.216]

Cyclopolymerization of the bis-methacrylates (10, ll)6" 6j or bis-styrene derivatives (12)64 has been used to produce heterotactic polymers and optically active atactic polymers. Cyclopolymcrization of racemic 13 by ATRP with a catalyst based on a chiral ligand (Scheme 8.12) gave preferential conversion of the (S, )-enantiomer. 66... [Pg.424]

Polystyrene-Woc -polysulfone-/ /oc -polystyrene and poly(butyl acrylate)-Woc -polysulfone-/ /oc -poly(butyl acrylate) triblock copolymers were prepared using a macroinitiator.214 The hydroxyl-terminated polysulfone was allowed to react with 2-bromopropionyl bromide, an atomic transfer radical polymerization (ATRP) initiator, in the presence of pyridine. The modified macroinitiator could initiate die styrene polymerization under controlled conditions. [Pg.359]

Star polymers are a class of polymers with interesting rheological and physical properties. The tetra-functionalized adamantane cores (adamantyls) have been employed as initiators in the atom transfer radical polymerization (ATRP) method applied to styrene and various acrylate monomers (see Fig. 21). [Pg.229]

Block copolymers were synthesized by a combination of fipase-catalyzed polymerization and atom transfer radical polymerization (ATRE). " " At first, the polymerization of 10-hydroxydecanoic acid was carried out by using lipase CA as catalyst. The terminal hydroxy group was modified by the reaction with a-bromopropionyl bromide, followed by ATRP of styrene using CuCE2,2 -bipyridine as catalyst system to give the polyester-polystyrene block copolymer. Trichloromethyl-terminated poly(e-CL), which was synthesized by lipase CA-catalyzed polymerization with 2,2,2-trichloroethanol initiator, was used as initiator for ATRP of styrene. [Pg.227]

There are a number of reports of NHC complexes of mid-late transition metals being used as catalysts for atom transfer radical polymerisation (ATRP) of acrylates and styrene. Grubbs reported Fe(II) complexes of a simple monodentate carbene. [Pg.116]

Fig. 4.15), are active for ATRP of both styrene and methylmethacrylate (MMA) [46]. Polymerisation was well controlled with polydispersities ranging from 1.05 to 1.47. The rates of polymerisation 1 x 10 s ) showed the complexes to be more active than phosphine and amine ligated Fe complexes, and were said to rival Cu-based ATRP systems. It was quite recent that Cu(I) complexes of NHCs were tested as ATRP catalysts [47]. In this work, tetrahydropyrimidine-based carbenes were employed to yield mono-carbene and di-carbene complexes 42 and 43 (Fig. 4.15), which were tested for MMA polymerisation. The mono-carbene complex 42 gave relatively high polydispersities (1.4-1.8) and a low initiation efficiency (0.5), both indicative of poor catalyst control. The di-carbene complex 43 led to nncontrolled radical polymerisation, which was ascribed to the insolubility of the complex. [Pg.117]

A combination of ATRP and ROP was employed for the synthesis of PLLA-fr-PS block copolymers and PLLA-fr-PS-fo-PMMA triblock terpoly-mers [120]. Styrene was initially polymerized using the functional initiator /3-hydroxyethyl a-bromobutyrate, HEBB, and the catalytic system CuBr/bpy. [Pg.63]

ABA triblock copolymers, where A was PBd and B either PS or PMMA were prepared by the combination of ROMP and ATRP techniques [122], The PBd middle blocks were obtained through the ROMP of cyclooctadi-ene in the presence of l,4-chloro-2-butene or cis-2-butene-l,4-diol bis(2-bromo)propionate using a Ru complex as the catalyst. The end allyl chloride or 2-bromopropionyl ester groups were subsequently used for the ATRP of either styrene or MMA using CuX/bpy (X = Cl or Br) as the catalytic system (Scheme 50). Quantitative yields but rather broad molecular weight distributions (Mw/Mn higher than 1.4) were obtained. [Pg.66]

Diblock copolymers PEO-fo-PS have been prepared using PEO macroinitiator and ATRP techniques [125]. The macroinitiator was synthesized by the reaction of monohydroxy-functionalized PEO with 2-chloro-2-phenylacetyl-chloride. MALDI-TOF revealed the successful synthesis of the macroinitiators. The ATRP of styrene was conducted in bulk at 130 °C with CuCl as the catalyst and 2,2 bipyridine, bipy, as the ligand. Yields higher than 80% and rather narrow molecular weight distributions (Mw/Mn < 1.3) were obtained. The surface morphology of these samples was investigated by atomic force microscopy, AFM. [Pg.69]

The bifunctional initiator 4-hydroxy-bulyl-2-bromoisobulyralc, HBBIB, promoted the ATRP of styrene as well as the cationic ring opening polymerization of THF [134], In the presence of Cu/CuBr2/PMDETA styrene was polymerized through the bromoisobutyrate function of HBBIB, to give PS chains end-functionalized with hydroxyl groups, PS-OH. The in situ... [Pg.75]

The same heterobifunctional initiator, 2-phenyl-2-[(2,2,6,6-tetramethy-piperidino)oxy] ethyl 2-bromo-2-methyl propanoate, was employed for the synthesis of PMMA-fo-PfBuA-fo-PS triblock terpolymers via the combination of ATRP and NMP [136]. Styrene was initially polymerized through the alkoxyamine function in bulk at 125 °C, leading to PS chains with bromine end groups. Subsequent addition of fBuA in the presence of CuBr/PMDETA provided the PS-fr-PfBuA diblock. Further addition of CuCl, to achieve halogen exchange and MMA yielded the desired triblock copolymer with... [Pg.76]

The oxocarbenium perchlorate C(CH20CH2CH2C0+C104 )4 was employed as a tetrafunctional initiator for the synthesis of PTHF 4-arm stars [146]. The living ends were subsequently reacted either with sodium bromoacetate or bromoisobutyryl chloride. The end-capping reaction was not efficient in the first case (lower than 45%). Therefore, the second procedure was the method of choice for the synthesis of the bromoisobutyryl star-shaped macroinitiators. In the presence of CuCl/bpy the ATRP of styrene was initiated in bulk, leading to the formation of (PTHF-fc-PS)4 star-block copolymers. Further addition of MMA provided the (PTHF-fr-PS-fc-PMMA)4 star-block terpolymers. Relatively narrow molecular weight distributions were obtained with this synthetic procedure. [Pg.84]

A combination of anionic and ATRP was employed for the synthesis of (PEO-b-PS) , n = 3, 4 star-block copolymers [148]. 2-Hydroxymethyl-l,3-propanediol was used as the initiator for the synthesis of the 3-arm PEO star. The hydroxyl functions were activated by diphenylmethyl potassium, DPMK in DMSO as the solvent. Only 20% of the stoichiometric quantity of DPMK was used to prevent a very fast polymerization of EO. Employing pentaerythritol as the multifunctional initiator a 4-arm PEO star was obtained. Well-defined products were provided in both cases. The hydroxyl end groups of the star polymers were activated with D PM K and reacted with an excess of 2-bromopropionylbro-mide at room temperature. Using these 2-bromopropionate-ended PEO stars in the presence of CuBr/bpy the ATRP of styrene was conducted in bulk at 100 °C, leading to the synthesis of the star-block copolymers with relatively narrow molecular weight distributions (Scheme 72). [Pg.85]

Bipyridine-centered triblock copolymers of the type BA-bpy-AB were prepared by a combination of ATRP and ROMP [159]. 4,4 -Bis(hydroxymelhyl)-2,2/-bipyridine was employed for the polymerization of lactic acid, LA or CL in the presence of Sn(Oct)2 in bulk at 130 and 110°C, respectively. The hydroxyl end groups were converted to tertiary or secondary bromo esters by reaction with 2-bromoisobutyryl bromide or 2-bromopropionyl bromide. The reaction yields were very high (> 80%) but not quantitative. These products were used as macroinitiators for the ATRP of MMA or tBuA in the presence of CuBr/HMTETA. 4,4/-bis(Chloromethyl)-2,2 -bipyridine was employed to promote the ATRP of MMA or styrene followed by the addition... [Pg.95]

Miktoarm stars of the A(BC)2 type, where A is PS, B is poly(f-bulyl acrylate) (PtBA), and C is PMMA [161] have been synthesized, by using the trifunctional initiator 2-phenyl-2-[(2,2,6,6-tetramethyl)-l-piperidinyloxy] ethyl 2,2-bis[methyl(2-bromopropionato)] propionate (NMP, ATRP) (Scheme 86). In the first step, a PS macroinitiator with dual < -bromo functionality was obtained by NMP of styrene in bulk at 125 °C. This precursor was subsequently used as the macroinitiator for the ATRP of ferf-bulyl acry-... [Pg.99]

ATRP and grafting from methods led to the synthesis of poly(styrene-g-tert-butyl acrylate)-fr-poly(ethylene-co-butylene)-fr-poly(styrene-g-ferf-butyl acrylate) block-graft copolymer [203]. ATRP initiating sites were produced along the PS blocks by chloromethylation as shown in Scheme 112. These sites then served to polymerize the ferf-butyl acrylate. The poly(ferf-butyl acrylate) grafts were hydrolyzed to result in the corresponding poly(acrylic... [Pg.127]

A final example is the synthesis of H-shaped copolymer of (PS PEG (PS)2 by ATRP, i.e. [209]. The synthetic strategy involves the synthesis of 2,2-bis(methylene a-bromopropionate) propionyl chloride (1), the preparation of 2,2-bis(methylene a-bromopropionate) propionyl-terminated poly(ethylene glycol) (BMBP-PEG-BMBP) (2), and then ATRP of styrene at 110 °C with BMBP-PEG-BMBP/CuBr/2,2/-bipyridine as the initiating system. The structure (3) was configured by using NMR and SEC measurements (Scheme 116). [Pg.130]

By contrast, much of the work performed using ruthenium-based catalysts has employed well-defined complexes. These have mostly been studied in the ATRP of MMA, and include complexes (158)-(165).400-405 Recent studies with (158) have shown the importance of amine additives which afford faster, more controlled polymerization.406 A fast polymerization has also been reported with a dimethylaminoindenyl analog of (161).407 The Grubbs-type metathesis initiator (165) polymerizes MMA without the need for an organic initiator, and may therefore be used to prepare block copolymers of MMA and 1,5-cyclooctadiene.405 Hydrogenation of this product yields PE-b-PMMA. N-heterocyclic carbene analogs of (164) have also been used to catalyze the free radical polymerization of both MMA and styrene.408... [Pg.21]

Several rhodium(I) complexes have also been employed as ATRP catalysts, including Wilkinson s catalyst, (177),391 421 422 ancj complex (178).423 However, polymerizations with both compounds are not as well-controlled as the examples discussed above. In conjunction with an alkyl iodide initiator, the rhenium(V) complex (179) has been used to polymerize styrene in a living manner (Mw/Mn< 1.2).389 At 100 °C this catalyst is significantly faster than (160), and remains active even at 30 °C. A rhenium(I) catalyst has also been reported (180) which polymerizes MM A and styrene at 50 °C in 1,2-dichloroethane.424... [Pg.22]

Substituted terpyridine, 4,4, 4"-tris(5-nonyl)-2,2 <5, 2"-terpyridine (tNtpy), is a planar tridentate ligand that was successfully used in homogeneous ATRP of methyl acrylate and styrene [79]. Polymerization of both monomers was controlled and the resulting polymers had relatively low polydispersities (MJMn < 1.2). Similarly to PMDETA, the typical ligand to copper halide ratio used in the polymerization was 1 1. Terpyridine and its derivatives are expected to form tetra-coordinated complexes with copper in which the fourth coordination sphere is occupied by a monodentate ligand (Br-, Cl , solvent, monomer, etc.). Although,... [Pg.232]


See other pages where Styrene ATRP is mentioned: [Pg.28]    [Pg.36]    [Pg.3608]    [Pg.597]    [Pg.622]    [Pg.270]    [Pg.278]    [Pg.124]    [Pg.28]    [Pg.36]    [Pg.3608]    [Pg.597]    [Pg.622]    [Pg.270]    [Pg.278]    [Pg.124]    [Pg.607]    [Pg.106]    [Pg.117]    [Pg.118]    [Pg.67]    [Pg.45]    [Pg.63]    [Pg.65]    [Pg.76]    [Pg.77]    [Pg.100]    [Pg.114]    [Pg.114]    [Pg.117]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.230]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



© 2024 chempedia.info