Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure simulation modelling approach

At this point we return to the polymer which is simplest with respect to its chemical structure, namely polyethylene (PE). In addition, for this polymer, the experimental database is much more complete, and also simulations of chemically realistic models, such as those described by Eqs. (5.7)—(5.11), are possible at high temperatures (Fig. 5.2a). Thus the prospects are very good that more can be learnt about the merits, as well as the limitations, of this modeling approach. [Pg.127]

As discussed in Section 6.5.3, coarse-grained molecular modeling approaches offer the most viable route to the molecular modeling of hydrated ionomer membranes. The coarse-grained treatment implies simplification in interactions, which can be systematically improved with advanced forcematching procedures, but allows simulations of systems with sufficient size and sufficient statistical sampling. Structural correlations, thermodynamic properties, and transport parameters can be studied. [Pg.421]

Track structure simulation has found application in many areas of radiation research since the pioneering studies of Mozumder and Magee [35]. These studies all employ essentially the same type of approach, a collision-to-collision modeling of the trajectory of the primary radiation particle and of its daughter secondary electrons, with the most significant difference between different calculations being the interaction cross sections used to describe the... [Pg.85]

For the description of a solution of alanine in water two models were compared and combined with one another (79), namely the continuum model approach and the cluster ansatz approach (148,149). In the cluster approach snapshots along a trajectory are harvested and subsequent quantum chemical analysis is carried out. In order to learn more about the structure and the effects of the solvent shell, the molecular dipole moments were computed. To harvest a trajectory and for comparison AIMD (here CPMD) simulations were carried out (79). The calculations contained one alanine molecule dissolved in 60 water molecules. The average dipole moments for alanine and water were derived by means of maximally localized Wannier functions (MLWF) (67-72). For the water molecules different solvent shells were selected according to the three radial pair distributions between water and the functional groups. An overview about the findings is given in Tables II and III. [Pg.127]

In principle, the expressions for pair potentials, osmotic pressure and second virial coefficients could be used as input parameters in computer simulations. The objective of performing such simulations is to clarify physical mechanisms and to provide a deeper insight into phenomena of interest, especially under those conditions where structural or thermodynamic parameters of the studied system cannot be accessed easily by experiment. The nature of the intermolecular forces responsible for protein self-assembly and phase behaviour under variation of solution conditions, including temperature, pH and ionic strength, has been explored using this kind of modelling approach (Dickinson and Krishna, 2001 Rosch and Errington, 2007 Blanch et al., 2002). [Pg.106]

To capture the meso-scale structure and/or to predict its effects, various modeling approaches have been proposed. The spatiotemporal resolution of these approaches grows with the development of the computer capacity, including the single-scale approaches, direct numerical simulations, and multi-scale approaches. [Pg.10]

The proposed modeling approach has been validated for distillation of non-reactive mixtures. For this purpose, the use is made of the total reflux distillation data for the binary mixture chlorobenzene/ethylbenzene (CB/EB) and ternary mixture methanol/acetonitrile/water (MEOH/ACN/WATER) obtained by Pelkonen (1997) as well as for the ternary mixture methanol/ethanol/water (MeOH/EtOH/WATER) measured by Mori et al. (2006). The experiments of Pelkonen (1997) were carried out in a column of 100 mm diameter, equipped with Montz-Pak A3-500 structured packing. The measured concentrations, temperature and flow rates at the condenser outlet are used as input values for simulations. [Pg.21]

Solvation effects were neglected in the Kubicki and Apitz study, in part, because of limited computer power.65 As a matter of general practice, however, one would probably run these types of gas-phase calculations prior to running simulations within a solvent even with unlimited computer resources. This is a common strategy to evaluate the effects of solvation on structure and one that provides an initial guess for the solvation calculations. One advantage of the molecular modeling approach is the ability to add and subtract components at will in order to assess the effects they have on the behavior of the system. [Pg.138]

The explicit modeling approach surrounds a solute molecule with solvent molecules and then examines each molecule in that solvated environment. Quantum chemical methods, both semiempiricaP and ab initio" have been used to do this however, molecular dynamics and Monte Carlo simulations using force fields are used most often.Calculations on ensembles of molecules are more complex than those on individual molecules. Dykstra et al. discuss calculations on ensembles of molecules in a chapter in this book series. Because of the many conformations accessible to both solute and solvent molecules, in addition to the great number of possible solute molecule-solvent molecule orientations, such direct QM calculations are very computer intensive. However, the information resulting from this type of calculation is comprehensive because it provides molecular structures of the solute and solvent, and takes into account the effect of the solvent on the solute. This is the method of choice for assessing specific bonding information. [Pg.214]


See other pages where Structure simulation modelling approach is mentioned: [Pg.479]    [Pg.329]    [Pg.103]    [Pg.163]    [Pg.459]    [Pg.230]    [Pg.178]    [Pg.245]    [Pg.560]    [Pg.22]    [Pg.3]    [Pg.138]    [Pg.380]    [Pg.110]    [Pg.160]    [Pg.100]    [Pg.644]    [Pg.60]    [Pg.492]    [Pg.105]    [Pg.48]    [Pg.7]    [Pg.17]    [Pg.276]    [Pg.56]    [Pg.71]    [Pg.39]    [Pg.339]    [Pg.125]    [Pg.65]    [Pg.168]    [Pg.165]    [Pg.265]    [Pg.324]    [Pg.164]    [Pg.28]    [Pg.125]    [Pg.64]    [Pg.1811]    [Pg.602]    [Pg.234]   
See also in sourсe #XX -- [ Pg.161 , Pg.163 ]




SEARCH



Model approach

Simulant modeling

Simulated model

Simulated modeling

Structural approach

Structure simulation modelling

© 2024 chempedia.info