Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure-Free Energy Relationship

Two approaches to quantify/fQ, i.e., to establish a quantitative relationship between the structural features of a compoimd and its properties, are described in this section quantitative structure-property relationships (QSPR) and linear free energy relationships (LFER) cf. Section 3.4.2.2). The LFER approach is important for historical reasons because it contributed the first attempt to predict the property of a compound from an analysis of its structure. LFERs can be established only for congeneric series of compounds, i.e., sets of compounds that share the same skeleton and only have variations in the substituents attached to this skeleton. As examples of a QSPR approach, currently available methods for the prediction of the octanol/water partition coefficient, log P, and of aqueous solubility, log S, of organic compoimds are described in Section 10.1.4 and Section 10.15, respectively. [Pg.488]

Another method for studying solvent effects is the extrathermodynamic approach that we described in Chapter 7 for the study of structure-reactivity relationships. For example, we might seek a correlation between og(,kA/l ) for a reaction A carried out in a series of solvents and log(/ R/A R) for a reference or model reaction carried out in the same series of solvents. A linear plot of og(k/iJk ) against log(/ R/ linear free energy relationship (LFER). Such plots have in fact been made. As with structure-reactivity relationships, these solvent-reactivity relationships can be useful to us, but they have limitations. [Pg.388]

Linear free energy relationships, see Bronsted equation, Dual substituent parameter (equations), Hammett equation(s), Quantitative structure-activity relationships, Ritchie nucleophilicity equation... [Pg.451]

LD model, see Langevin dipoles model (LD) Linear free-energy relationships, see Free energy relationships, linear Linear response approximation, 92,215 London, see Heitler-London model Lysine, structure of, 110 Lysozyme, (hen egg white), 153-169,154. See also Oligosaccharide hydrolysis active site of, 157-159, 167-169, 181 calibration of EVB surfaces, 162,162-166, 166... [Pg.232]

The necessity of the statistical approach has to be stressed once more. Any statement in this topic has a definitely statistical character and is valid only with a certain probability and in certain range of validity, limited as to the structural conditions and as to the temperature region. In fact, all chemical conceptions can break dovra when the temperature is changed too much. The isokinetic relationship, when significantly proved, can help in defining the term reaction series it can be considered a necessary but not sufficient condition of a common reaction mechanism and in any case is a necessary presumption for any linear free energy relationship. Hence, it does not at all detract from kinetic measurements at different temperatures on the contrary, it gives them still more importance. [Pg.473]

Because of the large number of chemicals of actual and potential concern, the difficulties and cost of experimental determinations, and scientific interest in elucidating the fundamental molecular determinants of physical-chemical properties, considerable effort has been devoted to generating quantitative structure-property relationships (QSPRs). This concept of structure-property relationships or structure-activity relationships (QSARs) is based on observations of linear free-energy relationships, and usually takes the form of a plot or regression of the property of interest as a function of an appropriate molecular descriptor which can be calculated using only a knowledge of molecular structure or a readily accessible molecular property. [Pg.14]

M. H. Abraham, New solute descriptors for linear free energy relationships and quantitative structure-activity relationships, in Quantitative Treatments of Solute/Solvent Interactions, P. Politzer and J. S. Murray, eds., Elsevier, Amsterdam (1994) pp. 83-134. [Pg.94]

The usual experimental approach3 is based on the Hammond postulate (Hammond, 1955). A transition state, which lies by definition between the starting materials and products for a particular step of a reaction, is supposed to be closer in structure, because closer in energy, to the higher energy species of the two. Various techniques, particularly linear free energy relationships, are available to compare the effects of various probes... [Pg.94]

The structure-reactivity relationship is a concept familiar to every organic chemist. As commonly used it refers to a linear free energy relationship, such as the Bronsted or Hammett equations, or some more general measure of the effect of changing substituent on the rate or equilibrium of a reaction. A substituent constant is conveniently defined as the effect of the substituent on the free-energy change for a control reaction. So the so-called structure-reactivity relationship is in fact usually a reactivity-reactivity relationship. [Pg.125]

Conformational changes frequently involve free energy barriers small enough to allow structures spread across the whole reaction coordinate to be observed in a series of crystal structures (see Section 2). Rate constants are also readily obtained by suitable NMR experiments, so this is an attractive area for the examination of possible relationships between crystal structure correlations and free energy relationships. In fact not a great deal of work has been done, though more can confidently be expected. [Pg.135]

The interaction between two adjacent bulky groups can depend on steric factors which are not necessarily related to the stability of the radicals produced on homolysis. It is estimated from linear free energy relationships that only 65-70% of the ground-state strain energy is relieved in the transition state for homolysis of a bond between two quaternary centres (Ruchardt and Beckhaus, 1980, 1986). Thus steric constraints to delocalization in the radicals produced may persist. A pertinent example is 2,3-di(l-adamantyl)-2,3-dimethylbutane [123] which has four such centres, linked by the long C-C bonds characteristic of this sort of structure. The strongest... [Pg.171]

Linear-free-energy relationships such as the Hammett and Taft equations [Lowry and Richardson, 1987] have been used to correlate copolymerization behavior with structure, but the approach is limited to considering a series of monomers that are similar in structure. Walling [1957] applied the Hammett equation to copolymerization among various meta- and para-substituted styrenes. The Taft equation in the form... [Pg.505]

To some extent these effects seem unavoidable and great caution has to be exercised when fine tuning the influence of small structural changes on pKs determined by acidity functions. On the other hand, these effects may well be small in many cases. Evidence supporting this contention originates in the existence of some excellent linear free energy relationships between gas phase and solution acidities and basicities (83MI2). [Pg.211]


See other pages where Structure-Free Energy Relationship is mentioned: [Pg.5]    [Pg.24]    [Pg.5]    [Pg.24]    [Pg.7]    [Pg.109]    [Pg.358]    [Pg.76]    [Pg.62]    [Pg.555]    [Pg.376]    [Pg.82]    [Pg.182]    [Pg.463]    [Pg.312]    [Pg.384]    [Pg.76]    [Pg.194]    [Pg.346]    [Pg.347]    [Pg.148]    [Pg.149]    [Pg.397]    [Pg.497]    [Pg.265]    [Pg.278]    [Pg.199]    [Pg.331]    [Pg.310]    [Pg.86]    [Pg.134]    [Pg.630]    [Pg.82]    [Pg.205]    [Pg.188]   


SEARCH



Application of linear free energy relationships to elucidate E2 transition state structure

Energy relationships

Energy structure

Free energy relationships

Structure-based free energy relationships

Structure-energy relationship

© 2024 chempedia.info