Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural isomers Organic compounds have different arrangements

Figure 13.6 showed you that an organic compound can be arranged in different structural shapes, called isomers. All the isomers of a compound have the same molecular formula. In this investigation, you will make two-dimensional and three-dimensional models of isomers. Your models will help you explore the arrangements of the atoms in organic compounds. [Pg.542]

Hydrocarbon Isomers Suppose you had ten blocks that could be snapped together in different arrangements. Each arrangement of the same ten blocks is different. The atoms in an organic molecule also can have different arrangements but still have the same molecular formula. Compounds that have the same molecular formula but different arrangements, or structures, are called isomers (I suh murz). Two isomers, butane and isobutane, are shown in Figure 7. They have different chemical and physical properties because of their different structures. As the size of a hydrocarbon molecule increases, the number of possible isomers also increases. [Pg.100]

As an example, consider the molecule formed from one atom each of carbon, hydrogen, and nitrogen. We can assemble these atoms in two different ways and still satisfy the octet rule. (This is another example of compounds that have the same molecular formula but a different arrangement of bonded atoms. Such compounds are called constitutional isomers or structural isomers and are very common in organic chemistry.) The structure on the left was the one used in Figure 1.6. The structure on the right is obtained if the hydrogen is bonded to the N rather than the C. [Pg.14]

Which of these two structures is correct Both of them satisfy the octet rule and neither has formal charges, so both are predicted to be of comparable stability. On the basis of what we have discussed so far, we cannot predict which is more stable. In fact, both of these compounds are quite stable and can be put in a bottle. But they are different compounds. Ethyl alcohol is the alcohol found in beverages. It is a liquid at room temperature. In contrast, dimethyl ether is a gas at room temperature and is quite poisonous. As was mentioned in Section 1.7, compounds such as these, with the same molecular formula but different arrangements of bonded atoms (different structures or different connectivities), are called constitutional isomers (or structural isomers). Constitutional isomerism is very common in organic compounds. This is another reason why it is necessary to show the structure of the compound under discussion rather than just the molecular formula. [Pg.34]

Third, carbon can form double or triple bonds with other carbon atoms to produce a variety of organic molecules with very different properties. Finally, the number of ways in which carbon and other atoms can be arranged is nearly limitless. In addition to linear chains of carbon atoms, ring structures and branched chains are common. Two organic compounds may even have the same number and kinds of atoms but completely different structures and thus different properties. Such organic molecules are referred to as isomers. [Pg.296]

The variety of possible carbon atom arrangements is even more important than the size range of the resulting molecules. The carbon atoms in all but the very simplest organic molecules can bond in more than one arrangement, giving rise to different compounds with different structures and properties. This property, called isomerism, is characterized by compounds that have identical molecular formulas but different arrangements of atoms. One type of isomerism is characterized by compounds called structural isomers. Another type of isomerism is introduced in Section 1.9. [Pg.34]


See other pages where Structural isomers Organic compounds have different arrangements is mentioned: [Pg.391]    [Pg.57]    [Pg.236]    [Pg.281]    [Pg.36]    [Pg.236]    [Pg.2291]    [Pg.236]    [Pg.808]    [Pg.110]    [Pg.157]    [Pg.472]    [Pg.310]    [Pg.593]    [Pg.6]    [Pg.494]    [Pg.200]    [Pg.676]    [Pg.211]    [Pg.4]   


SEARCH



Isomer structural

Organic compounds arrangement

Organic compounds isomers

Organic compounds, difference

Structural Arrangements

Structural differences

Structural isomers Organic compounds

Structural organization

Structure difference

Structure organization

© 2024 chempedia.info