Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural illite-montmorillonite

Some of the lMd material (either illite or mixed-layer illite-montmorillonite) presumably formed authigenically on the sea bottom or on land from the weathering of K-feldspars however, much of it was formed after burial. Studies of Tertiary, Cretaceous, and Pennsylvanian thick shale sections (Weaver, 1961b) indicate that little lMd illite was formed at the time of deposition. These shales and many others contain an abundance of expanded 2 1 dioctahedral clays with a lMd structure, some of which is detrital and some of which formed by the alteration of volcanic material on the sea floor. With burial the percentage of contracted 10A layers systematically increases. [Pg.20]

Structural formulas of some mixed-layer illite-montmorillonite clays... [Pg.110]

The most powerful methods for the study of adsorption mechanism of nitroaromatic compounds on clay minerals have become in situ spectroscopic investigations. Handerlein et al. [152, 153] and Weissmahr et al. [154-156] have investigated the adsorption of NACs particularly on illites, montmorillonites and homoionic kaolinites. The substituted nitrobenzenes on the surface of smectites were investigated by Boyd et al. [157, 158], The main focus in the experimental study of adsorption of NACs on the surface of clay minerals is the influence of the type of clay mineral, the effect of exchangeable cation of the mineral, the effect of the structure and the kind of substituents of NAC compound on the position and orientation of NACs to the surface of mineral, the character of interaction between NACs and the surface of mineral, the adsorption energy. [Pg.367]

Illite as a non-swelling clay mineral of layer structure plays a very important role in our studies. This special role is due to the fact that both sides of the surface of the silicate lamellae are made up of Si04-tetrahedron planar lattices, and this structure - even when hydrophobized - is identical with the surface structure of montmorillonite and vermiculite, both of which are of the swelling type. [Pg.881]

The three minerals - quartz, calcite and mica - tested by Von Moons, were ground to a very small particle size and the PI then determined on the fraction Imer than two microns. The activity of these minerals is low, as might be expected frxim their relatively simple crystal structure. Illite is probably the most widespread of all clay minerals but it usually occurs in conjunction with other minerals. The clay known as bentonite consists almost exclusively of the mineral montmorillonite. In its natural state bentonite is usually a sodium clay... [Pg.65]

The problem with limited selectivity includes some of the minerals which are problems for XRD illite, muscovite, smectites and mixed-layer clays. Poor crystallinity creates problems with both XRD and FTIR. The IR spectrum of an amorphous material lacks sharp distinguishing features but retains spectral intensity in the regions typical of its composition. The X-ray diffraction pattern shows low intensity relative to well-defined crystalline structures. The major problem for IR is selectivity for XRD it is sensitivity. In an interlaboratory FTIR comparison (7), two laboratories gave similar results for kaolinite, calcite, and illite, but substantially different results for montmorillonite and quartz. [Pg.48]

Figure 17. Proposed phase relations where K is a mobile component and Al, Fe are immobile components at about 20°C and several atmosphere water pressure for aluminous and ferric-ferrous mica-smectite minerals. Symbols are as follows I illite G = non-expanding glauconite Ox = iron oxide Kaol = kaolinlte Mo montmorillonite smectite N nontronitic smectite MLAL aluminous illite-smectite interlayered minerals Mlpe = iron-rich glauconite mica-smectite interlayered mineral. Dashed lines 1, 2, and 3 indicate the path three different starting materials might take during the process of glauconitization. The process involves increase of potassium content and the attainment of an iron-rich octahedral layer in a mica structure. Figure 17. Proposed phase relations where K is a mobile component and Al, Fe are immobile components at about 20°C and several atmosphere water pressure for aluminous and ferric-ferrous mica-smectite minerals. Symbols are as follows I illite G = non-expanding glauconite Ox = iron oxide Kaol = kaolinlte Mo montmorillonite smectite N nontronitic smectite MLAL aluminous illite-smectite interlayered minerals Mlpe = iron-rich glauconite mica-smectite interlayered mineral. Dashed lines 1, 2, and 3 indicate the path three different starting materials might take during the process of glauconitization. The process involves increase of potassium content and the attainment of an iron-rich octahedral layer in a mica structure.
As we have seen in the previous section, the bulk chemical compositions of montmorillonites taken from the literature are dispersed over the field of fully expandable, mixed layered and even extreme illite compositions. Just what the limits of true montmorillonite composition are cannot be established at present. We can, nevertheless, as a basis for discussion, assume that the ideal composition of beidellite with 0.25 charge per 10 oxygens and of montmorillonite with the same structural charge do exist in nature and that they form the end-members of montmorillonite solid solutions. Using this assumption one can suppose either solid solution between these two points or intimate mixtures of these two theoretical end-member fully expandable minerals. In either case the observable phase relations will be similar, since it is very difficult if not impossible to distinguish between the two species by physical or chemical methods should they be mixed together. As the bulk chemistry of the expandable phases suggests a mixture of two phases, we will use this hypothesis and it will be assumed here that the two montmorillonite... [Pg.84]

Figure 29. Possible general phase relations for illite and associated phyllosilicates as a function of varying P-T conditions. Ill = illite, either predominantly IMd or 2M in polymorph I = illite, 2M mica ID = k layer ordered mixed layered phase MLSS = mixed layered 3 or 2 layer ordering giving a superstructure reflection ML0 = mixed layered, ordered structure with no superstructure MLr = mixed layered non-ordered M, = fully expandable montmorillonite Chi = chlorite Kaol = kaolinite Exp 3 " expanding chlorite and/or corrensite. Figure 29. Possible general phase relations for illite and associated phyllosilicates as a function of varying P-T conditions. Ill = illite, either predominantly IMd or 2M in polymorph I = illite, 2M mica ID = k layer ordered mixed layered phase MLSS = mixed layered 3 or 2 layer ordering giving a superstructure reflection ML0 = mixed layered, ordered structure with no superstructure MLr = mixed layered non-ordered M, = fully expandable montmorillonite Chi = chlorite Kaol = kaolinite Exp 3 " expanding chlorite and/or corrensite.
The average Al203/Mg0 ratio for 24 illites is 9.6 and for 101 montmorillonites 6.7. Attapulgite values range from 2.5 to 0.48. The ratios of octahedral Al/octahedral Mg are respectively 5.4, 4.3 and 1.8-0.4. Radoslovich (1963b) found that the 2M muscovite structure required a minimum of 1.7 of the three octahedral sites be filled with Al. The Al occurs in the two symmetrically related sites and the larger divalent cation occurs in the distinctive or unoccupied site. The lower limit of 1.7 Al is equivalent to 85% of the two symmetrically related or occupied sites being filled in a stable muscovite structure. A similar restriction is reported for the trioctahedral micas where an upper limit of 1.00 (R3++ R4+)per three sites was found by Foster (1960). [Pg.121]

Clay colloids provide a good example of the kinds of structures that can be formed upon flocculation. The association of plate-like clay particles is complicated by the fact that minerals such as montmorillonite, illite, and kaolinite can exhibit different surface charges at different particle surfaces. [Pg.148]


See other pages where Structural illite-montmorillonite is mentioned: [Pg.62]    [Pg.12]    [Pg.98]    [Pg.108]    [Pg.168]    [Pg.180]    [Pg.269]    [Pg.879]    [Pg.273]    [Pg.593]    [Pg.502]    [Pg.380]    [Pg.33]    [Pg.115]    [Pg.830]    [Pg.278]    [Pg.278]    [Pg.549]    [Pg.360]    [Pg.42]    [Pg.97]    [Pg.170]    [Pg.424]    [Pg.69]    [Pg.122]    [Pg.7]    [Pg.13]    [Pg.66]    [Pg.67]    [Pg.73]    [Pg.112]    [Pg.186]    [Pg.363]    [Pg.543]    [Pg.115]    [Pg.66]    [Pg.406]    [Pg.15]    [Pg.351]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Illite

Illites

Illitization

Structural illite

Structural montmorillonite

© 2024 chempedia.info