Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural effects surface composition

Data accunnilated in the last years on the Ft/Cu alloys, in particular on the 1) surface composition, 2) electronic structure, 3) adsorption properties, 4) catalytic behaviour and 5) various side effects, make a detailed discussion possible of the catalytic selectivity and mechanism of hydrocarbon reactions. [Pg.267]

Stamenkovic V, Mun BS, Blizanac BB, Mayrhofer KJJ, Ross PN Jr, Markovic NM. 2006a. The effect of surface composition on electronic structure, stability and electrocehmical properties of Pt-transition metal alloys Pt-skin vs. Pt-skeleton surfaces. J Am Chem Soc 137 1. [Pg.268]

Most elastomers require reinforcing fillers to function effectively, and NMR has been used to characterize the structures of such composites as well. Examples are the adsorption of chains onto filler surfaces [275], the immobilization of these chains into "bound rubber" [276], and the imaging of the filler itself [277]. [Pg.375]

Shape selectivity and orbital confinement effects are direct results of the physical dimensions of the available space in microscopic vessels and are independent of the chemical composition of nano-vessels. However, the chemical composition in many cases cannot be ignored because in contrast to traditional solution chemistry where reactions occur primarily in a dynamic solvent cage, the majority of reactions in nano-vessels occur in close proximity to a rigid surface of the container (vessel) and can be influenced by the chemical and physical properties of the vessel walls. Consequently, we begin this review with a brief examination of both the shape (structure) and chemical compositions of a unique set of nano-vessels, the zeolites, and then we will move on to examine how the outcome of photochemical reactions can be influenced and controlled in these nanospace environments. [Pg.226]

Comparative methods may be effectively used for measurements of partial surface areas, Ac, of components in porous composites, for example for active surface area in supported catalysts. The traditional methods of Ac measurements are based on chemisorption of H2, 02, CO, NOr. and some other gases that chemisorb on an active component, and have negligible adsorption on a support [5,54], The calculation of Ac is fulfilled by an equation similar to Equation 9.18 assuming some values of w and atomic stoichiometry of chemisorption [54]. But, unfortunately chemisorption is extremely sensitive to insignificant variations of chemical composition and structure of surface, which alters the results of the measurements. [Pg.279]

The combined use of the modem tools of surface science should allow one to understand many fundamental questions in catalysis, at least for metals. These tools afford the experimentalist with an abundance of information on surface structure, surface composition, surface electronic structure, reaction mechanism, and reaction rate parameters for elementary steps. In combination they yield direct information on the effects of surface structure and composition on heterogeneous reactivity or, more accurately, surface reactivity. Consequently, the origin of well-known effects in catalysis such as structure sensitivity, selective poisoning, ligand and ensemble effects in alloy catalysis, catalytic promotion, chemical specificity, volcano effects, to name just a few, should be subject to study via surface science. In addition, mechanistic and kinetic studies can yield information helpful in unraveling results obtained in flow reactors under greatly different operating conditions. [Pg.2]

Fig. 9.11 a) Chemical structures of MMB and TFMB. b) Possibilities to reduce the total dipole moment in a SAM of mercaptobiphenyls by interactions with a polar solvent, tilt or assembly of opposite dipoles in mixed monolayers, c) Surface versus solution composition found for MMB and TFMB mixed systems in polar (ethanol) and less polar (toluene) solutions illustrating the effect of the assembling dipoles, d) The opposite molecular dipoles of MMB and TFMB proved to be sufficient to induce ligand exchange in order to reach an equilibrium situation in the surface composition (modified from ref [96]). [Pg.387]

The characteristics of particulate filled polymers are determined by the properties of their components, composition, structure and interactions [2]. These four factors are equally important and their effects are interconnected. The specific surface area of the filler, for example, determines the size of the contact surface between the filler and the polymer, thus the amount of the interphase formed. Surface energetics influence structure, and also the effect of composition on properties, as well as the mode of deformation. A relevant discussion of adhesion and interaction in particulate filled polymers cannot be carried out without defining the role of all factors which influence the properties of the composite and the interrelation among them. [Pg.112]

Effect of the Transition Metal Ions - Hexaaluminate materials, 1 >19, including transition metal ions in the structure (M = Mn, Fe, Cr, Co, Ni) were prepared both via the alkoxide15 and the coprecipitation route.23,24,25 For all the compositions investigated, monophasic samples with layered-alumina structure and surface area in the range 10-15 m2/g were obtained upon calcination at 1300 °C. [Pg.95]

In order to achieve the above objectives, three vinyl acrylic latexes of varying butyl acrylate content have been prepared and cleaned1 for use in the study. Several anionic and nonionic surfactants commonly usod in emulsion polymerization have been used to investigate the effects of surfactant structure and polymer composition on the solubilization process. Polarity of latex surface estimated from contact angle measurements have been used to study the effect of polymer polarity on surfactant adsorption. [Pg.226]


See other pages where Structural effects surface composition is mentioned: [Pg.117]    [Pg.88]    [Pg.299]    [Pg.312]    [Pg.314]    [Pg.2]    [Pg.45]    [Pg.265]    [Pg.71]    [Pg.74]    [Pg.319]    [Pg.136]    [Pg.288]    [Pg.282]    [Pg.21]    [Pg.49]    [Pg.97]    [Pg.92]    [Pg.388]    [Pg.34]    [Pg.167]    [Pg.103]    [Pg.139]    [Pg.162]    [Pg.159]    [Pg.589]    [Pg.69]    [Pg.2]    [Pg.10]    [Pg.40]    [Pg.388]    [Pg.149]    [Pg.87]    [Pg.48]    [Pg.67]    [Pg.299]   
See also in sourсe #XX -- [ Pg.72 , Pg.73 , Pg.74 , Pg.75 ]




SEARCH



Composite structures

Composite surface

Compositional effect

Structural composition

Structure composition

© 2024 chempedia.info