Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural dielectric properties

Microwave-assisted curing of epoxy resin systems was one of the first applications of MW in polymer chemistry and is the most widely studied area in polymer chemistry under both continuous and pulse microwave conditions. The structure, dielectric properties, toughness, mechanical strength, percentage of cure, and glass transition temperature of the epoxy formulations have been investigated [1]. [Pg.663]

Ah initio calculations of polymer properties are either simulations of oligomers or band-structure calculations. Properties often computed with ah initio methods are conformational energies, polarizability, hyperpolarizability, optical properties, dielectric properties, and charge distributions. Ah initio calculations are also used as a spot check to verify the accuracy of molecular mechanics methods for the polymer of interest. Such calculations are used to parameterize molecular mechanics force fields when existing methods are insulficient, which does not happen too often. [Pg.310]

There are a number of properties of molecules that are additive to a reasonable approximation, i.e. the value of such a property of a given molecule is an approximate sum of the values of the properties of either the atoms or bonds present. It has been shown that the dielectric constant is related to some additive properties and it is thus possible to make some estimate of dielectric properties from consideration of molecular structure. [Pg.117]

Phthalazinone, 355 synthesis of, 356 Phthalic anhydride, 101 Phthalic anhydride-glycerol reaction, 19 Physical properties. See also Barrier properties Dielectric properties Mechanical properties Molecular weight Optical properties Structure-property relationships Thermal properties of aliphatic polyesters, 40-44 of aromatic-aliphatic polyesters, 44-47 of aromatic polyesters, 47-53 of aromatic polymers, 273-274 of epoxy-phenol networks, 413-416 molecular weight and, 3 of PBT, PEN, and PTT, 44-46 of polyester-ether thermoplastic elastomers, 54 of polyesters, 32-60 of polyimides, 273-287 of polymers, 3... [Pg.593]

Other noncontact AFM methods have also been used to study the structure of water films and droplets [27,28]. Each has its own merits and will not be discussed in detail here. Often, however, many noncontact methods involve an oscillation of the lever in or out of mechanical resonance, which brings the tip too close to the liquid surface to ensure a truly nonperturbative imaging, at least for low-viscosity liquids. A simple technique developed in 1994 in the authors laboratory not only solves most of these problems but in addition provides new information on surface properties. It has been named scanning polarization force microscopy (SPFM) [29-31]. SPFM not only provides the topographic stracture, but allows also the study of local dielectric properties and even molecular orientation of the liquid. The remainder of this paper is devoted to reviewing the use of SPFM for wetting studies. [Pg.247]

An alternative electrical method that has been used in the study of glass-ionomer cements has been the measurement of dielectric properties. Tay Braden (1981, 1984) measured the resistance and capacitance of setting cements at various times from mixing. From the results obtained, relative permittivity and resistivity were calculated. In general, as these cements set, their resistivity was found to fall rapidly, then to rise again. Both these results and the results of relative permittivity measurements were consistent with the cements comprising highly ionic and polar structures. [Pg.367]

This definition of electrochemistry disregards systems in which nonequilibrium charged species are produced by external action in insulators for example, by electric discharge in the gas phase (electrochemistry of gases) or upon irradiation of liquid and sohd dielectrics (radiation chemistry). At the same time, electrochemistry deals with certain problems often associated with other fields of science, such as the structure and properties of sohd electrolytes and the kinetics of ioific reactions in solutions. [Pg.739]

For reactants having complex intramolecular structure, some coordinates Qk describe the intramolecular degrees of freedom. For solutions in which the motion of the molecules is not described by small vibrations, the coordinates Qk describe the effective oscillators corresponding to collective excitations in the medium. Summation rules have been derived which enable us to relate the characteristics of the effective oscillators with the dielectric properties of the fi edium.5... [Pg.99]

Each breakdown is accompanied by some sound effect and is followed by a steady degradation of properties.284 It can also lead to a complete destruction of the oxide with visible fissures and cracks.286 The particular behavior observed depends on a large number of factors (electrolyte concentration,287 defect concentration in the oxide,288 etc.). The breakdown of thin-film systems (M-O-M and M-O-S structures) as a rule leads to irreversible damage of oxide dielectric properties.289... [Pg.480]

Figure 3.2 (a-d) The structure, magnetism and dielectric properties of compound 2. (Adapted from Ref. [39]. Reproduced by permission of The Royal Society of Chemistry.)... [Pg.66]

Before fluorination, the dielectric constant ofpoly(bisbenzocyclobutene) was 2.8, and this value was reduced to 2.1 after plasma treatment. No data were reported in the paper on characterization of structure or properties, except for the dielectric constant of the modified poly(bisbenzocyclobutene). The authors did report that the thermal stability offluorinatedpoly(vinylidenefluoride) was inferior to the original poly(vinylidenefluoride) when treated in a similar way. One of the probable reasons for the low thermal stability is that the NF3 plasma degraded the polymer. According to their results, the thickness of fluorinated poly(bisbenzo-cyclobutene) was reduced by 30%. The same phenomenon was observed for other hydrocarbon polymers subjected to the NF3 plasma process. A remaining question is whether plasma treatment can modify more than a thin surface layer of the cured polymer Additionally, one of the side products generated was hydrogen fluoride, which is a serious drawback to this approach. [Pg.293]

PCBs are attractive for industrial applications because of their stability and dielectric properties [351-354]. Figure 1 shows the structure of the biphenyl molecule along with examples of chlorination that can occur at any of the positions on the rings. The physical and chemical properties of both isomers and mixtures used in industrial applications depend upon the degree and position of the chlorine atoms [355 -358]. There are 209 possible chlorobiphenyl isomers and Table 4 lists the number of isomers for various degrees of substitution. However, many of these isomers do not occur in significant amounts in commercial products, and isomers with four or five chlorine atoms on one ring but none on the other are not detectable in PCB mixtures [359-362]. [Pg.273]

The properties of membranes commonly studied by fluorescence techniques include motional, structural, and organizational aspects. Motional aspects include the rate of motion of fatty acyl chains, the head-group region of the phospholipids, and other lipid components and membrane proteins. The structural aspects of membranes would cover the orientational aspects of the lipid components. Organizational aspects include the distribution of lipids both laterally, in the plane of the membrane (e.g., phase separations), and across the membrane bilayer (phospholipid asymmetry) and distances from the surface or depth in the bilayer. Finally, there are properties of membranes pertaining to the surface such as the surface charge and dielectric properties. Fluorescence techniques have been widely used in the studies of membranes mainly since the time scale of the fluorescence lifetime coincides with the time scale of interest for lipid motion and since there are a wide number of fluorescence probes available which can be used to yield very specific information on membrane properties. [Pg.231]

Zhao, G., Norimoto, M., Tanaka, F., Yamada, T. and Rowell, R.M. (1987). Structure and properties of acetylated wood. I. Changes in the degree of crystallinity and dielectric properties by acetylation. Mokuzai Gakkaishi, 33(2), 136-142. [Pg.231]

Before we consider substitution processes in detail, the nature of the metal ion in solution will be briefly reviewed.A metal ion has a primary, highly structured, solvation sheath which comprises solvent molecules near to the metal ion. These have lost their translational degrees of freedom and move as one entity with the metal ion in solution. There is a secondary solvation shell around the metal ion, but the solvent molecules here have essentially bulk dielectric properties. The (primary) solvation number n in M(S)"+ of many of the labile and inert metal ions has been determined, directly by x-ray or neutron diffraction of concentrated solutions, from spectral and other considerations and by examining the exchange process... [Pg.200]


See other pages where Structural dielectric properties is mentioned: [Pg.9]    [Pg.10]    [Pg.482]    [Pg.734]    [Pg.332]    [Pg.339]    [Pg.237]    [Pg.274]    [Pg.10]    [Pg.7]    [Pg.76]    [Pg.197]    [Pg.70]    [Pg.125]    [Pg.196]    [Pg.197]    [Pg.102]    [Pg.88]    [Pg.4]    [Pg.31]    [Pg.363]    [Pg.278]    [Pg.6]    [Pg.408]    [Pg.411]    [Pg.102]    [Pg.11]    [Pg.47]    [Pg.85]    [Pg.398]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Dielectric propertie

Dielectric properties

Dielectric structure

Structure-property relationships dielectric properties

© 2024 chempedia.info