Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strong acid, definition

If a phenol is not indicated, the solution may contain an aliphatic acid. Transfer to a distilling-flask, make definitely acid with dih H2SO4, and distil the volatile formic and acetic acids if present will distil over. If the distillation gives negative reactions, test the residual solution in the flask for oxalic, succinic, lactic, tartaric and citric acids and glycine, remembering that the solution is strongly acid. [Pg.399]

The concept of oxidation number leads directly to a working definition of the terms oxidation and reduction. Oxidation is defined as an increase in oxidation number and reduction as a decrease in oxidation number. Consider once again the reaction of zinc with a strong acid ... [Pg.88]

Chromic hydroxide, Cr(OH)3, is a compound with low solubility in water. It is usually hydrated and does not have the definite composition represented by the formula. It is quite soluble either in strong acid or strong base. [Pg.410]

The standard solution is prepared by dissolving a weighed amount of pure potassium iodate in a solution containing a slight excess of pure potassium iodide, and diluting to a definite volume. This solution has two important uses. The first is as a source of a known quantity of iodine in titrations [compare Section 10.115(A)] it must be added to a solution containing strong acid it cannot be employed in a medium which is neutral or possesses a low acidity. [Pg.386]

Learning various kinds of chemical reactions and physical processes is an important element of all chemistry curricula. Earlier in this chapter we conunented on how students could recite the verbal definition of a strong acid but yet failed to select a visual representation that best illustrates the complete ionization of hydrogen chloride molecules. Another part of this study, conducted by Smith and Metz (1996), was probing students microscopic representation of the reaction... [Pg.67]

The catalysts that allow the production of maleic anhydride from n-butane with high selectivity, like (V0)2P207, are characterized by a strong acidity, that, like a strong basicity, favors the decomposition of alkoxides to give the olefin and the diene. The catalysts that allow the production of maleic anhydride, either from n-butane or from butenes and butadiene, necessarily have particular sites that allow the insertion of oxygen atoms in the 1,4-position of butadiene. These sites are definitely absent on combustion catalysts. [Pg.490]

In the above example, the anion (A) functions as a base when it combines with a hydrogen ion. (By definition, any substance that combines with hydrogen ions is a base. Like strong acids, strong bases ionize completely in a dilute aqueous solution.) Thus NaOH dissolves in water to form hydroxide ions, which in turn function as a base when they combine with hydrogen ions to form water, as shown by the general equations... [Pg.795]

The Br0nsted theory expands the definition of acids and bases to allow us to explain much more of solution chemistry. For example, the Brpnsted theory allows us to explain why a solution of ammonium chloride tests acidic and a solution of sodium acetate tests basic. Most of the substances that we consider acids in the Arrhenius theory are also acids in the Bronsted theory, and the same is true of bases. In both theories, strong acids are those that react completely with water to form ions. Weak acids ionize only slightly. We can now explain this partial ionization as an equilibrium reaction of the ions, the weak acid, and the water. A similar statement can be made about weak bases ... [Pg.302]

The mathematical definition of bh+ is like that of Ka (now right-to left, see equation (5)) writing a for activities and / for molar activity coefficients, as is commonly done in strong acid work, equation (6) is obtained ... [Pg.3]

At the microscopic level, the Arrhenius theory defines acids as substances which, when dissolved in water, yield the hydronium ion (H30+) or H+(aq). Bases are defined as substances which, when dissolved in water, yield the hydroxide ion (OH). Acids and bases may be strong (as in strong electrolytes), dissociating completely in water, or weak (as in weak electrolytes), partially dissociating in water. (We will see the more useful Brpnsted-Lowry definitions of acids and bases in Chapter 15.) Strong acids include ... [Pg.54]

The silica-alumina surface is still more strongly acidic than the alumina surface. The acidity is less sensitive to poisoning by water. There has been much discussion whether the acidity of silica-alumina is caused by Bronsted or by Lewis acid sites. This matter has not been. settled definitely, although there is evidence that both types of acidity are present. This would explain the observation that the catalytic efficiency in different reactions may be selectively poisoned by different reagents. [Pg.263]

These definitions of acids and bases sound very simple. Just one little proton moving around. What s the big deal That one little proton moving around and reacting has powerful consequences—a strong acid or base can eat through your skin, or even metal. [Pg.46]

Drugs cross biological membranes most readily in the unionised state. The unionised drug is 1000-10000 times more lipid-soluble than the ionised form and thus is able to penetrate the cell membrane more easily. Chemical compounds in solution are acids, bases or neutral. The Bronsted-Lowry definition of an acid is a species that donates protons (H+ ions) while bases are proton acceptors. Strong acids and bases in solution dissociate almost completely into their conjugate base and H+. Weak acids and weak bases do not completely dissociate in solution, and exist in both ionised and unionised states. Most drugs are either weak acids or weak bases. For an acid, dissociation in solution is represented by ... [Pg.32]

Most of them dissolve in solutions of the fixed alkalies, whether hot or cold, as also in ammonia, and form definite salts—re slnates—some of which are quite neutral, These resinates are soluble in water, and form a considerable portion of the cheaper kinds of soap, being themselves possessed of detergent qualities. RoBtnatcs of the alkaline earths, and of the heavy metallic oxides, may be prepared from those of the alkalies by double decomposition but they are insoluble, and generally strong acids liberate the resin from them unchanged. [Pg.836]

Common strong acids and bases are listed in Table 6-2, which you need to memorize. By definition, a strong acid or base is completely dissociated in aqueous solution. That is, the equilibrium constants for the following reactions are large. [Pg.109]

The definition of pH is pH = —log[H+] (which will be modified to include activity later). Ka is the equilibrium constant for the dissociation of an acid HA + H20 H30+ + A-. Kb is the base hydrolysis constant for the reaction B + H20 BH+ + OH. When either Ka or Kb is large, the acid or base is said to be strong otherwise, the acid or base is weak. Common strong acids and bases are listed in Table 6-2, which you should memorize. The most common weak acids are carboxylic acids (RC02H), and the most common weak bases are amines (R3N ). Carboxylate anions (RC02) are weak bases, and ammonium ions (R3NH+) are weak acids. Metal cations also are weak acids. For a conjugate acid-base pair in water, Ka- Kb = Kw. For polyprotic acids, we denote the successive acid dissociation constants as Kal, K, K, , or just Aj, K2, A"3, . For polybasic species, we denote successive hydrolysis constants Kbi, Kb2, A"h3, . For a diprotic system, the relations between successive acid and base equilibrium constants are Afa Kb2 — Kw and K.a Kbl = A w. For a triprotic system the relations are A al KM = ATW, K.d2 Kb2 = ATW, and Ka2 Kb, = Kw. [Pg.116]

According to the classical definition as formulated by Arrhenius, an acid is a substance that can yield H+ in aqueous solution. Strong acids are those that ionize completely in water, such as HCIO4 and HNO3. These acids ionize by means of... [Pg.277]

Definition of Acids and Bases 222 Conjugate Acid-Base Pairs 222 Amphoteric Species 224 Strong Acids 225 Strong Bases 225 Weak Acids 226 Weak Bases 226 Polyprotic Acids 227 Acid and Base Strength Ka and Kb 228 Acid/Base Strength of Conjugate Acid-Base Pairs 230 Acid-Base Reactions 231... [Pg.436]


See other pages where Strong acid, definition is mentioned: [Pg.28]    [Pg.515]    [Pg.145]    [Pg.66]    [Pg.277]    [Pg.795]    [Pg.3]    [Pg.298]    [Pg.90]    [Pg.293]    [Pg.137]    [Pg.154]    [Pg.334]    [Pg.122]    [Pg.16]    [Pg.241]    [Pg.241]    [Pg.243]    [Pg.210]    [Pg.151]    [Pg.615]    [Pg.285]    [Pg.13]    [Pg.132]    [Pg.19]   
See also in sourсe #XX -- [ Pg.86 ]

See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Acidity definitions

Acids definition

Acids strong

Strong acids, atmospheric definitions

Strongly acidic

© 2024 chempedia.info