Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stirred tank transferred heat flow

Bourne, J.R., Buerli, M. and Regenass, W. (1981) Heat Transfer and Power Measurement in stirred tanks using heat flow calorimetry. Chemical Engineering Science, 36, 347-54. [Pg.240]

Continuous Flow Reactors—Stirred Tanks. The continuous flow stirred tank reactor is used extensively in chemical process industries. Both single tanks and batteries of tanks connected in series are used. In many respects the mechanical and heat transfer aspects of these reactors closely resemble the stirred tank batch reactors treated in the previous subsection. However, in the present case, one must also provide for continuous addition of reactants and continuous withdrawal of the product stream. [Pg.249]

A continuous flow stirred tank reactor (CFSTR) differs from the batch reactor in that the feed mixture continuously enters and the outlet mixture is continuously withdrawn. There is intense mixing in the reactor to destroy any concentration and temperature differences. Heat transfer must be extremely efficient to keep the temperature of the reaction mixture equal to the temperature of the heat transfer medium. The CFSTR can either be used alone or as part of a series of battery CFSTRs as shown in Figure 4-5. If several vessels are used in series, the net effect is partial backmixing. [Pg.226]

In many eases, the heat flow (Q) to the reaetor is given in terms of the overall heat transfer eoeffieient U, the heat exehange area A, and the differenee between the ambient temperature, T, and the reaetion temperature, T. For a eontinuous flow stirred tank reaetor (CFSTR) in whieh both fluid temperatures (i.e., inside and outside the exehanger) are eonstant (e.g., eondensing steam), Q is expressed as... [Pg.434]

An endothermie reaetion A —> R is performed in three-stage, eon-tinuous flow stirred tank reaetors (CFSTRs). An overall eonversion of 95% of A is required, and the desired produetion rate is 0.95 x 10 kmol/see of R. All three reaetors, whieh must be of equal volume, are operated at 50°C. The reaetion is first order, and the value of the rate eonstant at 50°C is 4 x 10 see The eoneentration of A in the feed is 1 kmol/m and the feed is available at 75°C. The eontents of all three reaetors are heated by steam eondensing at 100°C inside the eoils. The overall heat transfer eoeffieient for the heat-exehange system is 1,500 J/m see °C, and the heat of reaetion is -1-1.5 x 10 J/kmol of A reaeted. [Pg.440]

Recycling of partially reacted feed streams is usually carried out after the product is separated and recovered. Unreacted feedstock can be separated and recycled to (ultimate) extinction. Figure 4.2 shows a different situation. It is a loop reactor where some of the reaction mass is returned to the inlet without separation. Internal recycle exists in every stirred tank reactor. An external recycle loop as shown in Figure 4.2 is less common, but is used, particularly in large plants where a conventional stirred tank would have heat transfer limitations. The net throughput for the system is Q = but an amount q is recycled back to the reactor inlet so that the flow through the reactor is Qin + q- Performance of this loop reactor system depends on the recycle ratio qlQin and on the type of reactor that is in the loop. Fast external recycle has... [Pg.139]

Fig. 5.4-23 shows a sketch drawing of a BSC (Brogli et al., 1981). The stirred-tank reactor made of glass (a metal version is also available) is surrounded by a jacket through which a heat-transfer fluid flows at a very high rate the jacket is not insulated. The temperature of the circulation loop is regulated by a cascaded controller so that the heat evolution in the reactor is equilibrated by heat transfer through the reactor wall. The temperature in the loop is adjusted by injection of thermostatted hot or cold fluid. [Pg.302]

Fig. 3.2 shows the case of a jacketed, stirred-tank reactor, in which either heating by steam or cooling medium can be applied to the jacket. Here V is volume, Cp is specific heat capacity, p is density, Q is the rate of heat transfer, U is the overall heat transfer coefficient, A is the area for heat transfer, T is temperature, H is enthalpy of vapour, h is liquid enthalpy, F is volumetric flow... [Pg.132]

Chapter 3 concerns the dynamic characteristics of stagewise types of equipment, based on the concept of the well-stirred tank. In this, the various types of stirred-tank chemical reactor operation are considered, together with allowance for heat effects, non-ideal flow, control and safety. Also included is the modelling of stagewise mass transfer applications, based on liquid-liquid extraction, gas absorption and distillation. [Pg.707]

Chemical reactors intended for use in different processes differ in size, geometry and design. Nevertheless, a number of common features allows to classify them in a systematic way [3], [4], [9]. Aspects such as, flow pattern of the reaction mixture, conditions of heat transfer in the reactor, mode of operation, variation in the process variables with time and constructional features, can be considered. This work deals with the classification according to the flow pattern of the reaction mixture, the conditions of heat transfer and the mode of operation. The main purpose is to show the utility of a Continuous Stirred Tank Reactor (CSTR) both from the point of view of control design and the study of nonlinear phenomena. [Pg.3]

The rates of heat transfer between the fermentation broth and the heat-transfer fluid (such as steam or cooling water flowing through the external jacket or the coil) can be estimated from the data provided in Chapter 5. For example, the film coefficient of heat transfer to or from the broth contained in a jacketed or coiled stirred-tank fermentor can be estimated using Equation 5.13. In the case of non-Newtonian liquids, the apparent viscosity, as defined by Equation 2.6, should be used. [Pg.195]

For heat-and mass transfer it is very important to have a high superficial velocity for the gas. The maximum attainable value in a stirred tank is 0.08 m3/(m2.s). A suitable design value would be 0.06 m/s. Therefore, if the cross-section of the tank must be designed, this value will be chosen, taking into consideration the pressure and temperature conditions of the gas in the tank for correcting gas flows. [Pg.313]

All chemical reactions are accompanied by some heat effects so that the temperature will tend to change, a serious result in view of the sensitivity of most reaction rates to temperature. Factors of equipment size, controllability, and possibly unfavorable product distribution of complex reactions often necessitate provision of means of heat transfer to keep the temperature within bounds. In practical operation of nonflow or tubular flow reactors, truly isothermal conditions are not feasible even if they were desirable. Individual continuous stirred tanks, however, do maintain substantially uniform temperatures at steady state when the mixing is intense enough the level is determined by the heat of reaction as well as the rate of heat transfer provided. [Pg.555]

A reaction A——>P is to be performed in a PFR. The reaction follows first-order kinetics, and at 50 °C in the batch mode, the conversion reaches 99% in 60 seconds. Pure plug flow behavior is assumed. The flow velocity should be 1 m s"1 and the overall heat transfer coefficient 1000Wm 2 K"1. (Why is it higher than in stirred tank reactors ). The maximum temperature difference with the cooling system is 50 K. [Pg.194]

When a liquid warms up, its density decreases, which results in buoyancy and an ascendant flow is induced. Thus, a reactive liquid will flow upwards in the center of a container and flow downwards at the walls, where it cools this flow is called natural convection. Thus, at the wall, heat exchange may occur to a certain degree. This situation may correspond to a stirred tank reactor after loss of agitation. The exact mathematical description requires the simultaneous solution of heat and impulse transfer equations. Nevertheless, it is possible to use a simplified approach based on physical similitude. The mode of heat transfer within a fluid can be characterized by a dimensionless criterion, the Rayleigh number (Ra). As the Reynolds number does for forced convection, the Rayleigh number characterizes the flow regime in natural convection ... [Pg.340]

Continuous-stirred tank reactors lie somewhere between tubular and batch reactors. Mixing and heat transfer problems are similar to those of batch reactors. However, many of the stirred-tank reactors have benefits of the tubular flow reactors. These include isolation of intermediates, automatic control, and low labor costs. [Pg.475]


See other pages where Stirred tank transferred heat flow is mentioned: [Pg.470]    [Pg.468]    [Pg.894]    [Pg.902]    [Pg.402]    [Pg.112]    [Pg.1030]    [Pg.195]    [Pg.521]    [Pg.699]    [Pg.704]    [Pg.2070]    [Pg.214]    [Pg.292]    [Pg.86]    [Pg.250]    [Pg.366]    [Pg.284]    [Pg.222]    [Pg.54]    [Pg.56]    [Pg.567]    [Pg.586]    [Pg.10]    [Pg.55]    [Pg.45]    [Pg.195]    [Pg.44]    [Pg.44]    [Pg.44]    [Pg.377]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Heated tanks

Stirred flow

© 2024 chempedia.info