Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stirred-flow reactor applications

Stirred-flow reactors have been studied and used by chemical engineers for many years, but their application to chemical research is more recent, first by Denbigh (1944), and then by Hammett (1960). Stirred-flow reactors have recently been used by soil chemists to study soil chemical reaction... [Pg.51]

The effect of physical processes on reactor performance is more complex than for two-phase systems because both gas-liquid and liquid-solid interphase transport effects may be coupled with the intrinsic rate. The most common types of three-phase reactors are the slurry and trickle-bed reactors. These have found wide applications in the petroleum industry. A slurry reactor is a multi-phase flow reactor in which the reactant gas is bubbled through a solution containing solid catalyst particles. The reactor may operate continuously as a steady flow system with respect to both gas and liquid phases. Alternatively, a fixed charge of liquid is initially added to the stirred vessel, and the gas is continuously added such that the reactor is batch with respect to the liquid phase. This method is used in some hydrogenation reactions such as hydrogenation of oils in a slurry of nickel catalyst particles. Figure 4-15 shows a slurry-type reactor used for polymerization of ethylene in a sluiTy of solid catalyst particles in a solvent of cyclohexane. [Pg.240]

Frequently, stirred tanks are used with a continuous flow of material in on one side of the tank and with a continuous outflow from the other. A particular application is the use of the tank as a continuous stirred-tank reactor (CSTR). Inevitably, there will be a vety wide range of residence times for elements of fluid in the tank. Even if the mixing is so rapid that the contents of the tank are always virtually uniform in composition, some elements of fluid will almost immediately flow to the outlet point and others will continue circulating in the tank for a very long period before leaving. The mean residence time of fluid in the tank is given by ... [Pg.310]

Many wastewater flows in industry can not be treated by standard aerobic or anaerobic treatment methods due to the presence of relatively low concentration of toxic pollutants. Ozone can be used as a pretreatment step for the selective oxidation of these toxic pollutants. Due to the high costs of ozone it is important to minimise the loss of ozone due to reaction of ozone with non-toxic easily biodegradable compounds, ozone decay and discharge of ozone with the effluent from the ozone reactor. By means of a mathematical model, set up for a plug flow reactor and a continuos flow stirred tank reactor, it is possible to calculate more quantitatively the efficiency of the ozone use, independent of reaction kinetics, mass transfer rates of ozone and reactor type. The model predicts that the oxidation process is most efficiently realised by application of a plug flow reactor instead of a continuous flow stirred tank reactor. [Pg.273]

Stirred tank reactors (STR) are the most frequently used reactors in lab-scale ozonation, partially due to the ease in modeling completely mixed phases, but they are very seldom used in full-scale applications. There are various modifications with regard to the types of gas diffusers or the construction of the stirrers possible. Normally lab-scale reactors are equipped with coarse diffusers, such as a ring pipe with holes of 0,1-1.0 m3 diameter. The k/ a-values are in the range of 0.02 to 2.0 s (see Table 2-4 ), which are considerably higher than those of bubble columns. From the viewpoint of mass transfer, the main advantage of STRs is that the stirrer speed can be varied, and thus also the ozone mass transfer coefficient, independently of the gas flow rate. [Pg.62]

An attractive property of monolithic reactors is their flexibility of application in multiphase reactions. These can be classified according to operation in (semi)batch or continuous mode and as plug-flow or stirred-tank reactor or, according to the contacting mode, as co-, counter-, and crosscurrent. In view of the relatively high flow rates and fast responses in the monolith, transient operations also are among the possibilities. [Pg.226]

In a recycle reactor, part of the exit stream is recycled back to the inlet of the reactor. For a stirred-tank reactor, recycle has no effect on conversion, since we are essentially just mixing a mixed reactor. For a plug flow reactor, the effect of recycle is to approach the performance of a CSTR. This is advantageous for certain applications such as autocatalytic reactions and multiple reaction situations where we have a PFR but really require a CSTR. [Pg.475]

Knowledge of these types of reactors is important because some industrial reactors approach the idealized types or may be simulated by a number of ideal reactors. In this chapter, we will review the above reactors and their applications in the chemical process industries. Additionally, multiphase reactors such as the fixed and fluidized beds are reviewed. In Chapter 5, the numerical method of analysis will be used to model the concentration-time profiles of various reactions in a batch reactor, and provide sizing of the batch, semi-batch, continuous flow stirred tank, and plug flow reactors for both isothermal and adiabatic conditions. [Pg.220]

High labor and handling costs as well as the start-up and shutdown times required to fill and empty the reactor are important drawbacks in a batch operation. Continuous flow systems are nearly always more cost-effective than batch reactors, especially when large volumes are to be treated, i.e., the main application of this reactor configuration is wastewater treatment. The removal of phenolic compounds from waters has been performed using SBP and HRP in continuous stirred tank reactor (CSTR) [49, 75, 76, 81, 83, 84],... [Pg.257]

There are four ideal reactors the batch reactor (real counterpart stirred tank reactor), semibatch reactor,1 continuous stirred tank reactor (CSTR), and the plug flow tubular reactor (PFTR) (real counterpart tube reactor). For production applications, there are also numerous other reactors [7-9], An overview of typical and advanced laboratory reactors was given by Kapteijn and Moulijn [6],... [Pg.258]

The stationary-state heat release rate may also be interpreted from the measured temperature excess in well-stirred flow systems. The energy conservation equation for a well-stirred flow system is similar to equation (6.13) but an additional term is required to represent heat transport via the outflowing gases (a-Cp(T- Tafltres) as shown in equation (4.4). The inflowing gases are assumed to be pre-heated to the vessel temperature, Ta- Under constant pressure conditions, normally applicable to flow reactors, Cp replaces C, and A.H replaces AU in equation (6.13). The heat release is obtained from a summation of the product of individual reaction rates and their enthalpy change (-AH)jRj) in equation (5.4)). [Pg.557]

Ranade and Tayalia (2000) validated the snapshot approach by considering a two-dimensional case of rotating flows. Application of this approach to simulating complex, three-dimensional flows in stirred tank reactors is discussed below. The next section will discuss application of this approach to cases relevant to reactor engineering. [Pg.295]


See other pages where Stirred-flow reactor applications is mentioned: [Pg.346]    [Pg.2070]    [Pg.89]    [Pg.71]    [Pg.143]    [Pg.204]    [Pg.236]    [Pg.292]    [Pg.159]    [Pg.83]    [Pg.123]    [Pg.220]    [Pg.282]    [Pg.243]    [Pg.9]    [Pg.571]    [Pg.650]    [Pg.567]    [Pg.370]    [Pg.301]    [Pg.219]    [Pg.226]    [Pg.216]    [Pg.228]    [Pg.220]    [Pg.250]    [Pg.1827]    [Pg.568]    [Pg.567]    [Pg.331]    [Pg.600]    [Pg.567]    [Pg.567]    [Pg.67]    [Pg.6]    [Pg.142]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Flow applications

Reactor stirred

Reactors stirring

Stirred flow

© 2024 chempedia.info