Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steric effects in addition

The Bsmoc derivative is formed from the chloroformate or the A -hydroxy-succinimide ester. It is cleaved rapidly by a Michael addition with tris(2-aminoethyl)amine at a rate that leaves Fmoc derivatives intact. More hindered bases, such as A -methylcyclohexylamine or diisopropylamine, do not react with the Bsmoc group, but do cleave the Fmoc group, illustrating the importance of steric effects in additions to Michael acceptors. [Pg.510]

Since the solvent properties of dimethyl sulfoxide are widely different from those of hydrocarbons and halogenated hydrocarbons, it may be difficult to compare the kinetic and thermodynamic data for the C02H group (Table 16) directly with others. However, heating the carboxylic acid (68, X = OH) in toluene affords the sp isomer almost exclusively. Probably, the observed results with the carboxylic acid derive from difficulty in the formation of a hydrogen bond owing to a steric effect, in addition to the nonplanar conformation of the carboxyl group relative to the naphthalene. [Pg.44]

Bromination of allylic positions cannot be achieved specifically by using elementary bromine, unless electrophilic addition to the rc-bond (Eq. 18) is unfavorable because the substituents have a high negative inductive effect. Efficiency of electrophilic addition of Br2 may also be diminished by steric effects. In addition to these secondary thermal reactions, the specificity of photochemical brominations of allylic positions using Br2 will also suffer from the competing (radical) addition of Br to the double bond (Eq. 19) [31]. [Pg.246]

Because the steric effect contributes to the complex formation between guest and host, the chiral resolution on these CSPs is affected by the structures of the analytes. Amino acids, amino alcohols, and derivatives of amines are the best classes for studying the effect of analyte structures on the chiral resolution. The effect of analyte structures on the chiral resolution may be obtained from the work of Hyun et al. [47,48]. The authors studied the chiral resolution of amino alcohols, amides, amino esters, and amino carbonyls. The effects of the substituents on the chiral resolution of some racemic compounds are shown in Table 6. A perusal of this table indicates the dominant effect of steric interactions on chiral resolution. Furthermore, an improved resolution of the racemic compounds, having phenyl moieties as the substituents, may be observed from this Table 6. ft may be the result of the presence of n—n interactions between the CCE and racemates. Generally, the resolution decreases with the addition of bulky groups, which may be caused by the steric effects. In addition, some anions have been used as the mobile phase additives for the improvement of the chiral resolution of amino acids [76]. Recently, Machida et al. [69] reported the use of some mobile phase additives for the improvement of chiral resolution. They observed an improvement in the chiral resolution of some hydrophobic amino compound using cyclodextrins and cations as mobile phase additives. [Pg.307]

The hydrogen of HCo(dp)2 and HCo(PBu3)4 can be regarded as H rather than H+. Consequently, the reactivity or catalytic activity of these complexes differs. For example, the difference in iso/normal ratio in the oxo reaction was explained in terms of the difference in the ligands 53 56T Thus, when a phosphine such as PBu3 is coordinated to cobalt, the ratio of normal increases over that obtained with the corresponding carbonyl. In this case, a straight chain is formed by the olefin insertion when the acidity of the hydride is decreased. The increase of the normal aldehydes relative to iso aldehydes can be explained by the Markownikoff rule. Of course, as in many other cases, the steric effect, in addition to the electronic effect, should be considered at the same time. [Pg.53]

Chemical bonding of alkoxysilanes to a hydroxylated substrate can be accomplished in an aqueous or anhydrous environment [19]. In aqueous silylation, the presence of water molecules leads to the formation of polysilanes, which may limit the development of a uniform surface coverage owing to steric effects. In addition,... [Pg.325]

For most vinyl polymers, head-to-tail addition is the dominant mode of addition. Variations from this generalization become more common for polymerizations which are carried out at higher temperatures. Head-to-head addition is also somewhat more abundant in the case of halogenated monomers such as vinyl chloride. The preponderance of head-to-tail additions is understood to arise from a combination of resonance and steric effects. In many cases the ionic or free-radical reaction center occurs at the substituted carbon due to the possibility of resonance stabilization or electron delocalization through the substituent group. Head-to-tail attachment is also sterically favored, since the substituent groups on successive repeat units are separated by a methylene... [Pg.23]

The importance of steric effects in determining the oxidation state of the product can be illustrated by a thioether linkage, eg (57). If a methyl group is forced to be adjacent to the sulfur bond, the planarity required for efficient electron donation by unshared electrons is prevented and oxidation is not observed (48). Similar chemistry is observed in the addition of organic nitrogen and oxygen nucleophiles as well as inorganic anions. [Pg.410]

Studies on covalent hydration of N-heterocycles (67AG(E)919,76AHC(20)117) have revealed the diagnostic value of alkyl substituents in structural assignments due to their steric hindrance effects in addition reactions. C-Methyl substituents are therefore also considered as molecular probes to solve fine-structural problems in the pteridine field. The derivatives... [Pg.265]

The DTBS group is probably the most useful of the bifunctional silyl ethers. Dimeihylsilyl and diisopropylsilyl derivatives of diols are very susceptible to hydrolysis even in water and therefore are of limited use, unless other structurally imposed steric effects provide additional stabilization. [Pg.237]

On the theoretical side, study of the dissociation of addition compounds of amines with trimethylborane, boron trifluoride, and borane provide a new quantitative approach to steric strains. These studies quickly removed doubts as to the importance of steric effects in chemical behavior. [Pg.17]

If the substituents are nonpolar, such as an alkyl or aryl group, the control is exerted mainly by steric effects. In particular, for a-substituted aldehydes, the Felkin TS model can be taken as the starting point for analysis, in combination with the cyclic TS. (See Section 2.4.1.3, Part A to review the Felkin model.) The analysis and prediction of the direction of the preferred reaction depends on the same principles as for simple diastereoselectivity and are done by consideration of the attractive and repulsive interactions in the presumed TS. In the Felkin model for nucleophilic addition to carbonyl centers the larger a-substituent is aligned anti to the approaching enolate and yields the 3,4-syn product. If reaction occurs by an alternative approach, the stereochemistry is reversed, and this is called an anti-Felkin approach. [Pg.90]

IV Steric Effects in Free Radical Addition Reactions... [Pg.22]

Cycloadditions of ketenes and alkenes have been shown to have synthetic utility for the preparation of cyclobutanones.101 The stereoselectivity of ketene-alkene cycloaddition can be analyzed in terms of the Woodward-Hoffmann rules.102 To be an allowed process, the [2n + 2n] cycloaddition must be suprafacial in one component and antarafacial in the other. An alternative description of the transition state is a [2ns + (2ns + 2ns)] addition.103 Figure 6.6 illustrates these transition states. The ketene, utilizing its low-lying LUMO, is the antarafacial component and interacts with the HOMO of the alkene. The stereoselectivity of ketene cycloadditions can be rationalized in terms of steric effects in this transition state. Minimization of interaction between the substituents R and R leads to a cyclobutanone in which these substituents are cis. This is the... [Pg.367]

The stability of azole carbenes can be attributed to electronic factors which operate in both the Tran d CT-frameworks (92JA5530). In the TT-framework, electron donation into the carbene out-of-plane p-orbital by the electron-rich system moderates the typical electrophilic reactivity of carbenes. In the o-framework, additional stability for the carbene electron pair may be gained from the o-electron-withdrawal effects on the carbene center by the more electronegative nitrogens, which moderates the carbene nucleophilic reactivity. The combination of these a- and TT-effects serves to increase the singlet-triplet gap and stabilize the singlet carbene over the more reactive triplet state. For carbenes with bulky substituents (tert-butyl, 1-adamantyl, etc.) steric effects provide additional stabilization. [Pg.129]


See other pages where Steric effects in addition is mentioned: [Pg.264]    [Pg.61]    [Pg.85]    [Pg.45]    [Pg.183]    [Pg.265]    [Pg.229]    [Pg.45]    [Pg.264]    [Pg.61]    [Pg.85]    [Pg.45]    [Pg.183]    [Pg.265]    [Pg.229]    [Pg.45]    [Pg.137]    [Pg.24]    [Pg.130]    [Pg.421]    [Pg.915]    [Pg.27]    [Pg.71]    [Pg.20]    [Pg.356]    [Pg.311]   
See also in sourсe #XX -- [ Pg.181 , Pg.205 , Pg.235 ]

See also in sourсe #XX -- [ Pg.181 , Pg.205 , Pg.235 ]




SEARCH



Steric Effects in Free Radical Addition Reactions

© 2024 chempedia.info