Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoisomers, meso

Only three not four stereoisomeric 2 3 butanediols are possible These three are shown m Eigure 7 10 The (2R 3R) and (2S 3S) forms are enantiomers of each other and have equal and opposite optical rotations A third combination of chirality centers (2R 3S) however gives an achiral structure that is superimposable on its (2S 3R) minor image Because it is achiral this third stereoisomer is optically inactive We call achiral mole cules that have chnahty centers meso forms The meso form m Eigure 7 10 is known as meso 2 3 butanediol... [Pg.303]

FIGURE 7 10 Stereo isomeric 2 3 butanediols shown in their eclipsed con formations for convenience Stereoisomers (a) and (b) are enantiomers of each other Structure (c) is a diastereo mer of (a) and (b) and is achiral It is called meso 2 3 butanediol... [Pg.303]

Fischer projection formulas can help us identify meso forms Of the three stereoisomeric 2 3 butanediols notice that only in the meso stereoisomer does a dashed line through the center of the Fischer projection divide the molecule into two mirror image halves... [Pg.304]

A meso stereoisomer is possible for one of the following com pounds Which one ... [Pg.304]

When two or more of a molecule s chirality centers are equivalently substituted meso forms are possible and the number of stereoisomers is then less than 2" Thus 2" represents the maximum number of stereoisomers for a molecule containing n chirality centers... [Pg.306]

Three stereoisomers are possible a parr of enantiomers and a meso form... [Pg.307]

Epoxidation of alkenes is a stereospecific syn addition Which stereoisomer of 2 butene reacts with peroxyacetic acid to give meso 2 3 epoxybu tane Which one gives a racemic mixture of (2/ 3/ ) and (25 35) 2 3 epoxybutane ... [Pg.309]

Section 7 12 For a particular constitution the maximum number of stereoisomers is 2" where n is the number of structural units capable of stereochemical variation—usually this is the number of chirality centers but can include E and Z double bonds as well The number of stereoisomers is reduced to less than 2" when there are meso forms... [Pg.317]

Merrifield method See solid phase peptide synthesis Meso stereoisomer (Section 7 11) An achiral molecule that has chirality centers The most common kind of meso com pound IS a molecule with two chirality centers and a plane of symmetry... [Pg.1288]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

DUactide (5) exists as three stereoisomers, depending on the configurations of the lactic acid monomer used. The enantiomeric forms whereia the methyl groups are cis are formed from two identical lactic acid molecules, D- or L-, whereas the dilactide formed from a racemic mixture of lactic acid is the opticaUy iaactive meso form, with methyl groups trans. The physical properties of the enantiomeric dilactide differ from those of the meso form (6), as do the properties of the polymers and copolymers produced from the respective dilactide (23,24). [Pg.512]

The steric bulk of the three iodine atoms in the 2,4,6-triiodoben2ene system and the amide nature of the 1,3,5-substituents yield rotational isomers of the 5-A/-acyl-substituted 2,4,6-triiodoisophthalamides. Rotational motion in the bonds connecting the side chains and the aromatic ring is restricted. These compounds also exhibit stereoisomerism when chiral carbon atoms are present on side chains. (R,5)-3-Amino-l,2-propanediol is incorporated in the synthesis of iohexol (11) and ioversol (12) and an (3)-2-hydroxypropanoyl group is used in the synthesis of iopamidol (10). Consequendy, the resulting products contain a mixture of stereoisomers, ie, meso-isomers, or an optical isomer. [Pg.466]

The reason that the third stereoisomer is achiral is that the substituents on the two asymmetric carbons are located with respect to each other in such a way that a molecular plane of symmetry exists. Compounds that incorporate asymmetric atoms but are nevertheless achiral are called meso forms. This situation occurs whenever pairs of stereogenic centers are disposed in the molecule in such a way as to create a plane of symmetry. A... [Pg.85]

In the desulfurization of 3-substituted thiophenes several stereoisomers may be formed in certain cases. Both meso and racemic compounds have been obtained from the desulfurization of 3,4-diaryl-substituted thiophenes. It is claimed, however, that only meso, -diphenyladipic acid is obtained upon desulfurization of 3,4-di-phenyl-2,5-thiophenedicarboxylic acid and only di-isoleucin from 3-thienylglycine. The formation of small amounts of dimeric products in the desulfurization has been discussed with reference to the mechanism of this reaction. ... [Pg.116]

Some physical properties of the three stereoisomers are listed in Table 9.3. The (+)- and (-j-tartaric acids have identical melting points, solubilities, and densities but differ in the sign of their rotation of plane-polarized light. The meso isomer, by contrast, is diastereomeric with the (+) and (-) forms. As such, it has no mirror-image relationship to (+)- and (-)-tartaric acids, is a different compound altogether, and has different physical properties. [Pg.306]

Conduritols and inositols are cyclic polyalcohols with significant biological activity. The presence of four stereogenic centers in the stmcture of conduritols allows the existence of 10 stereoisomers. Enzymatic methods have been reported for the resolution of racemic mixtures or the desymmetrization of meso-conduritols. For example, Mucor miehei lipase (MML) showed enantiomeric discrimination between all-(R) and all-(S) stereoisomers ofconduritol E tetraacetate (Figure 6.52). Alcoholysis resulted in the removal of the four acetyl groups ofthe all-(R) enantiomer whereas the all-(S) enantiomer was recovered [141]. [Pg.153]

However, if both maleic and fumaric acid gave the dl pair or a mixture in which the dl pair predominated, the reaction would be stereoselective but not stereospecific. If more or less equal amounts of dl and meso forms were produced in each case, the reaction would be nonstereoselective. A consequence of these definitions is that if a reaction is carried out on a compound that has no stereoisomers, it cannot be stereospecific, but at most stereoselective. For example, addition of bromine to methylacetylene could (and does) result in preferential formation of trans-1,2-dibromopropene, but this can be only a stereoselective, not a stereospecific reaction. [Pg.167]

In open-chain compounds, the molecule can usually adopt that conformation in which H and X are anti periplanar. However, in cyclic systems this is not always the case. There are nine stereoisomers of 1,2,3,4,5,6-hexachlorocy-clohexane seven meso forms and a dl pair (see p. 161). Four of the meso compounds and the dl pair (all that were then known) were subjected to elimination of HCl. Only one of these (1) has no Cl trans to an H. Of the other isomers, the fastest elimination rate was about three times as fast as the... [Pg.1301]

It is possible for a componnd to be its own mirror image. In such a case, the compound will not have a twin. It will be all by itself, and the total number of stereoisomers will be an odd number, rather than an even number. That one lonely compound is called a meso componnd. If you try to draw the enantiomer (using either of the methods we have seen), yon will find fhat your drawing will be the same compound as what yon started with. [Pg.156]

In the previous section, the adaptation of the RIS model was based on the distance between next-nearest neighbor beads. This approach is obviously inadequate for CH3-CHX-CH2-CHX-CH3, because it necessarily abandons the ability to attribute different conformational characteristics to the meso and racemo stereoisomers. Therefore a more robust adaption of the RIS model to the 2nnd lattice is necessary if one wants to investigate the influence of stereochemical composition and stereochemical sequence on vinyl polymers [156]. Here we describe a method that has this capability. Of course, this method retains the ability to treat chains such as PE in which the bonds are subject to symmetric torsion potential energy functions. [Pg.94]

The chemical composition of the macular yellow pigment was originally characterized by Wald as being a leaf xanthophyll carotenoid (Wald 1945). It took another 40 years until the molecules lutein and zeaxanthin were identified as its main constituents by Bone et al. (1985), and in 1993 the same authors reported that macular zeaxanthin is itself comprised of two stereoisomers, (3/f,37f)-/eaxan(hin and (3/f,3. S )-/eaxan(hin (Bone et al. 1993), this compound will be called (meso)-zeaxanthin throughout this article. These three molecules are often collectively called the macular xanthophylls (for their chemical formulas see Figure 13.2). [Pg.259]

As already mentioned, macular zeaxanthin comprises two stereoisomers, the normal dietary (3/(,37()-/caxanthin and (3f ,3 S)-zeaxanthin(=(meyo)-zeaxanthin), of which the latter is not normally a dietary component (Bone et al. 1993) and is not found in any other compartment of the body except in the retina. The concentration of (tneso)-zeaxanthin in the retina decreases from a maximum within the central fovea to a minimum in the peripheral retina, similar to the situation with (3/ ,37 )-zeaxanthin. This distribution inversely reflects the relative concentration of lutein in the retina and gave rise to a hypothesis (Bone et al. 1997) that (meso)-zeaxanthin is formed in the retina from lutein. This was confirmed by an experiment in which xanthophyll-depleted monkeys had been supplemented with chemically pure lutein or (3/ ,37 )-zeaxanthin (Johnson et al. 2005). (Meyo)-Zeaxanthin was exclusively detected in the retina of lutein-fed monkeys but not in retinas of zeaxanthin-fed animals, demonstrating that it is a retina-specific metabolite of lutein only. The mechanism of its formation has not been established but may involve oxidation-reduction reactions that are mediated photochemically, enzymatically, or both. Thus, (meso)-zeaxanthin is a metabolite unique to the primate macula. [Pg.262]

Lactide (LA), the cyclic diester of lactic acid, has two stereogenic centers and hence exists as three stereoisomers L-lactide (S,S), D-lactide (R,R), and meso-lactide (R,S). In addition, rac-lactide, a commercially available racemic mixture of the (R,R) and (S,S) forms, is also frequently studied. PLA may exhibit several stereoregular architectures (in addition to the non-stereoregular atactic form), namely isotactic, syndiotactic, and heterotactic (Scheme 15). The purely isotactic form may be readily prepared from the ROP of L-LA (or D-LA), assuming that epimerization does not occur during ring opening. The physical properties, and hence medical uses, of the different stereoisomers of PLA and their copolymers vary widely and the reader is directed to several recent reviews for more information.736 740-743... [Pg.37]

The isolation of calycanthine (9) in 1888 by Eccles [28] and the subsequent proposition for its origins in the oxidative dimerization of tryptamine by Woodward [29] and Robinson [30] had prompted several key synthetic studies based on a biomimetic approach. Hendrickson was the first to experimentally verify the plausibility of forming the C3-C3 linked dimers through an oxidative radical dimerization strategy (Scheme 9.2a). He demonstrated that the sodium enolate of a tryptamine-derived oxindole could be oxidized with iodine to afford a mixture of three possible stereoisomers. The racemic product was isolated in 13 % yield, while the meso product was isolated in 8 % yield. Global reduction of the oxindole and carbamates afforded the first synthetic samples of chimonanthine (7) [9a],... [Pg.217]


See other pages where Stereoisomers, meso is mentioned: [Pg.131]    [Pg.1173]    [Pg.312]    [Pg.131]    [Pg.1173]    [Pg.312]    [Pg.305]    [Pg.309]    [Pg.1226]    [Pg.47]    [Pg.135]    [Pg.304]    [Pg.305]    [Pg.1226]    [Pg.263]    [Pg.146]    [Pg.53]   


SEARCH



Fischer projection formulas of meso stereoisomer

Fischer projections meso stereoisomer

Meso Compounds the Stereoisomers of Tartaric Acid

Meso stereoisomer

Meso stereoisomer

Stereoisomer

Stereoisomers

Stereoisomers, meso compounds

Stereoisomers, meso radicals

© 2024 chempedia.info