Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry oxidative addition reactions

Alkyl halides that do not readily undergo nucleophilic attack may oxidatively add to a metal by radical mechanisms. Oxidative addition reactions that occur by radical mechanisms show loss of stereochemistry, nomeproducible rates, inhibition by radical inhibitors, and acceleration by O2 or light. Reactions of lr(Cl)(CO)(PMe3)2 with methyl and benzyl halides showed no indication of radical behavior, but other saturated alkyl halides, vinyl, and aryl halides showed characteristics consistent with a radical-chain pathway. [Pg.2565]

Rh(TTP) reacts with alkyl halides, acyl halides, aroyl halides, and sulfonyl halides, but it shows no evidence of reaction with molecular hydrogen. These observations further emphasize the fact that Rh(TTP) is essentially a nucleophile and it therefore reacts with those reagents RX that can oxidatively add by nucleophilic attack (34). Rh(TTP) does not react with H2, and H2 seems always to add to (P complexes via a concerted mechanism (35). It appears that Rh(TTP) has very little diradical character, i.e. it is not a good analog of a carbene (35). It is possible that this unreactivity may be associated with the stereochemistry of chelation by the macrocyclic ligand. Earlier studies on the oxidative addition reactions of Rh(I) complex with a tetraaza macrocycle revealed that the Rh(I) had strong nucleophilic properties but the activation of molecular H2 was not reported (36, 37). This possibility is supported by reports that dialkyl sulfide complexes of rhodium chloride catalyze the hydrogenation of olefins (38). [Pg.372]

Osmium, quinuclidinetetraoxime-stereochemistry, 44 Osmium, tetrachloronitrido-tetraphenylarsenate stereochemistry, 44 Osmium, tris( 1,10-phenanthroline) -structure, 64 Osmium(II) complexes polymerization electrochemistry, 488 Osmium(III) complexes magnetic behavior, 273 Osmium(lV) complexes magnetic behavior, 272 Osmium(V) complexes magnetic behavior, 272 Osmium(VI) complexes magnetic behavior, 272 Oxaloacetic acid decarboxylation metal complexes, 427 Oxamidoxime in gravimetry, 533 Oxidation-reduction potentials non-aqueous solvents, 27 Oxidation state nomenclature, 120 Oxidative addition reactions, 282 Oxidative dehydrogenation coordinated imines, 455 Oximes... [Pg.596]

Write probable mechanisms for the following oxidative addition reactions. Evaluate the stereochemistry when appropriate. [Pg.750]

Stereochemistry. Past and current discussions on the stereochemical course of oxidative addition reactions are centred on iridium(i) compounds, though several stereochemical studies at other metal centres, especially cobalt(i), have been conducted. [Pg.353]

Studies on oxidative-addition reactions of alkyl halides to square-planar iridium(i) complexes and other low-valent metal centres have shown that the reactions may either be regarded as Ss2 processes in which the metal centre acts as a nucleophile or else involve a concerted, three-centre addition. However, it has now been found that the oxidative-addition reaction of many alkyl halides to /w j-[IrCl(CO)(PMe3)2] can also proceed via a free-radical pathway. The studies show that the rates of reaction are greatly enhanced if small quantities of oxygen or a radical initiator, e.g. benzoyl peroxide, are present and that reaction rates are retarded by traces of radical scavengers, e.g. duroquinone or hydroquinone. Studies with the halides (1) show that the reaction proceeds with loss of stereochemistry at carbon. It is also found that the reaction rate... [Pg.451]

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

Secondary bromides and tosylates react with inversion of stereochemistry, as in the classical SN2 substitution reaction.24 Alkyl iodides, however, lead to racemized product. Aryl and alkenyl halides are reactive, even though the direct displacement mechanism is not feasible. For these halides, the overall mechanism probably consists of two steps an oxidative addition to the metal, after which the oxidation state of the copper is +3, followed by combination of two of the groups from the copper. This process, which is very common for transition metal intermediates, is called reductive elimination. The [R 2Cu] species is linear and the oxidative addition takes place perpendicular to this moiety, generating a T-shaped structure. The reductive elimination occurs between adjacent R and R groups, accounting for the absence of R — R coupling product. [Pg.681]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

In the carbohydrate chemistry arena, the Tsuji-Trost reaction has been applied to construct N-glycosidic bonds [53]. In the presence of Pd2(dba>3, the reaction of 2,3-unsaturated hexopyranoside 68 and imidazole afforded N-glycopyranoside 69 regiospecifically at the anomeric center with retention of configuration. In terms of the stereochemistry, the oxidative addition of allylic substrate 68 to Pd(0) formed the jc-allyl complex with inversion of configuration, then nucleophilic attack by imidazole proceeded with another inversion of the configuration. Therefore, the overall stereochemical outcome is retention of configuration. [Pg.350]

The oxidative addition of alkyl halides can proceed in different ways, although the result is usually atrans addition independent of the mechanism. In certain cases the reaction proceeds as an SN2 reaction as in organic chemistry. That is to say that the electron-rich metal nucleophile attacks the carbon atom of the alkyl halide, the halide being the leaving group. This process leads to inversion of the stereochemistry of the carbon atom (only when the carbon atom is asymmetric can this be observed). There are also examples in which racemisation occurs. This has been explained on the basis of a radical chain... [Pg.37]

The unique feature of the Horner-Wittig reaction is that the addition intermediate can be isolated and purified. This provides a means for control of the stereochemistry of the reaction. It is possible to separate the two diastereomeric adducts in order to prepare the pure alkenes. The elimination process is syn so that the stereochemistry of the alkene depends on the stereochemistry of the adduct. Usually, the anti adduct is the major product, so it is the Z-alkene which is favored. The syn adduct is most easily obtained by reduction of /i-keto phosphine oxides.160... [Pg.117]

Mori has reported the nickel-catalyzed cyclization/hydrosilylation of dienals to form protected alkenylcycloalk-anols." For example, reaction of 4-benzyloxymethyl-5,7-octadienal 48a and triethylsilane catalyzed by a 1 2 mixture of Ni(GOD)2 and PPhs in toluene at room temperature gave the silyloxycyclopentane 49a in 70% yield with exclusive formation of the m,//7 //i -diastereomer (Scheme 14). In a similar manner, the 6,8-nonadienal 48b underwent nickel-catalyzed reaction to form silyloxycyclohexane 49b in 71% yield with exclusive formation of the // /i ,// /i -diastereomer, and the 7,9-decadienal 48c underwent reaction to form silyloxycycloheptane 49c in 66% yield with undetermined stereochemistry (Scheme 14). On the basis of related stoichiometric experiments, Mori proposed a mechanism for the nickel-catalyzed cyclization/hydrosilylation of dienals involving initial insertion of the diene moiety into the Ni-H bond of a silylnickel hydride complex to form the (7r-allyl)nickel silyl complex li (Scheme 15). Intramolecular carbometallation followed by O-Si reductive elimination and H-Si oxidative addition would release the silyloxycycloalkane with regeneration of the active silylnickel hydride catalyst. [Pg.388]


See other pages where Stereochemistry oxidative addition reactions is mentioned: [Pg.236]    [Pg.299]    [Pg.614]    [Pg.1126]    [Pg.2860]    [Pg.3357]    [Pg.168]    [Pg.342]    [Pg.403]    [Pg.2859]    [Pg.3356]    [Pg.403]    [Pg.1126]    [Pg.370]    [Pg.4580]    [Pg.7]    [Pg.12]    [Pg.51]    [Pg.458]    [Pg.210]    [Pg.72]    [Pg.80]    [Pg.222]    [Pg.260]    [Pg.27]    [Pg.242]    [Pg.489]    [Pg.46]    [Pg.577]    [Pg.179]    [Pg.258]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Addition-oxidation reactions

Oxidation oxidative addition reaction

Oxidation stereochemistry

Oxidative addition reactions

Oxide stereochemistry

Reaction stereochemistry

© 2024 chempedia.info