Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry double bond

This process accounts for most of the observations relating to product stereochemistry, double bond isomerism, deuterium exchange and other features encountered in the hydrogenation and deuteration of olefins. 140-142,144 addition of hydrogen to the double bond proceeds in... [Pg.112]

A similar approach can be applied for treating the stereochemistry at double bonds. [Pg.80]

Figure 2-84. Basic steps for describing the stereochemistry at a double bond by a permutation descriptor The double bond is split into two parts, These parts are separated into the skeleton and its ligands. Both are then numbered independently, with the indices ofthe skeletons in italics, the indices ofthe ligands in bold. Figure 2-84. Basic steps for describing the stereochemistry at a double bond by a permutation descriptor The double bond is split into two parts, These parts are separated into the skeleton and its ligands. Both are then numbered independently, with the indices ofthe skeletons in italics, the indices ofthe ligands in bold.
Comments The diene A is symmetrical so it doesn t matter which double bond is attacked by the carbene. On the other hand, it may be difficult to stop carbene addition to the second double bond. The only control over the stereochemistry will be that the trans compound we want is more stable. Japanese chemists have recently synthesised optically active trans chrysanthemic acid by this route (Tetrahedron Letters. 1977, 2599). [Pg.115]

Cyclopentene derivatives with carboxylic acid side-chains can be stereoselectively hydroxy-lated by the iodolactonization procedure (E.J. Corey, 1969, 1970). To the trisubstituted cyclopentene described on p. 210 a large iodine cation is added stereoselectively to the less hindered -side of the 9,10 double bond. Lactone formation occurs on the intermediate iod-onium ion specifically at C-9ot. Later the iodine is reductively removed with tri-n-butyltin hydride. The cyclopentane ring now bears all oxygen and carbon substituents in the right stereochemistry, and the carbon chains can be built starting from the C-8 and C-12 substit""" ... [Pg.275]

The term syn addition describes the stereochemistry of reactions such as this m which two atoms or groups add to the same face of a double bond When atoms or groups add to opposite faces of the double bond the process is called anti addition... [Pg.234]

A second aspect of hydroboration-oxidation concerns its stereochemistry As illustrated for the case of 1 methylcyclopentene H and OH add to the same face of the double bond... [Pg.252]

Double bonds m the mam chain are signaled by the ending enow acid and their position IS designated by a numerical prefix Entries 6 and 7 are representative carboxylic acids that contain double bonds Double bond stereochemistry is specified by using either the cis-trans or the E-Z notation... [Pg.793]

Cholesterol was isolated m the eighteenth century but its structure is so complex that Its correct constitution was not determined until 1932 and its stereochemistry not verified until 1955 Steroids are characterized by the tetracyclic ring system shown m Figure 26 9a As shown m Figure 26 9b cholesterol contains this tetracyclic skeleton modified to include an alcohol function at C 3 a double bond at C 5 methyl groups at C 10 and C 13 and a C Hn side chain at C 17 Isoprene units may be discerned m var lous portions of the cholesterol molecule but the overall correspondence with the iso prene rule is far from perfect Indeed cholesterol has only 27 carbon atoms three too few for It to be classed as a tnterpene... [Pg.1093]

Proton chemical shift data from nuclear magnetic resonance has historically not been very informative because the methylene groups in the hydrocarbon chain are not easily differentiated. However, this can be turned to advantage if a polar group is present on the side chain causing the shift of adjacent hydrogens downfteld. High resolution C-nmr has been able to determine position and stereochemistry of double bonds in the fatty acid chain (62). Broad band nmr has also been shown useful for determination of soHd fat content. [Pg.132]

Catalytic hydrogenation of the 14—15 double bond from the face opposite to the C18 substituent yields (196). Compound (196) contains the natural steroid stereochemistry around the D-ring. A metal-ammonia reduction of (196) forms the most stable product (197) thermodynamically. When R is equal to methyl, this process comprises an efficient total synthesis of estradiol methyl ester. Birch reduction of the A-ring of (197) followed by acid hydrolysis of the resultant enol ether allows access into the 19-norsteroids (198) (204). [Pg.437]

Other spectroscopic methods such as infrared (ir), and nuclear magnetic resonance (nmr), circular dichroism (cd), and mass spectrometry (ms) are invaluable tools for identification and stmcture elucidation. Nmr spectroscopy allows for geometric assignment of the carbon—carbon double bonds, as well as relative stereochemistry of ring substituents. These spectroscopic methods coupled with traditional chemical derivatization techniques provide the framework by which new carotenoids are identified and characterized (16,17). [Pg.97]

Most parent structures consist essentially of an assembly of rings and/or chains, the degree of hydrogenation of which is defined (usually completely saturated or containing the maximum number of non-cumulative double bonds in cyclic portions), and having no attached functional substituents (the carbohydrates are a notable exception to this). The stereochemistry at all (or most) chiral centres is defined thus such parent structures are sometimes referred to as stereoparents . Some examples are shown (77)-(83). [Pg.28]

To control the stereochemistry of epoxidation at the 10,11-double bond in intermediates in prostaglandin synthesis, a bulky protective group was used for the C15-OH group. Epoxidation of the tribenzylsilyl ether yielded 88% a-oxide epoxidation of the tri-/ -xylylsilyl ether was less selective. ... [Pg.84]

The stereochemistry of the most fundamental reaction types such as addition, substitution, and elimination are described by terms which specify the stereochemical relationship between the reactants and products. Addition and elimination reactions are classified as syn or anti, depending on whether the covalent bonds which are made or broken are on the same face or opposite faces of the plane of the double bond. [Pg.97]

Entries 1 and 2 in Scheme 2.9 are typical of concerted syn addition to alkene double bonds. On treatment with peroxyacetic acid, the Z-alkene affords the cis-oxirane, whereas the -alkene affords only the iraws-oxirane. Similarly, addition of dibromocarbene to Z-2-butene yields exclusively l,l-dibromo-cw-2,3-dimethylcyclopropane, whereas only 1,1-dibromo-/ra 5-2,3-dimethylcyclopropane is formed from -2-butene. There are also numerous stereospecific anti additions. Entiy 3 shows the anti stereochemistry typical of bromination of simple alkenes. [Pg.100]

According to this mechanism, a molecule of bromine becomes complexed to the double bond of the alkene, and reorganization of the bonding electrons gives the product. This mechanism can be shown to be incorrect for most alkenes on the basis of stereochemistry. Most alkenes give bromination products in which the two added bromines are on opposite sides of the former carbon-carbon double bond. The above mechanism does not account for this and therefore must be incorrect... [Pg.246]

A significant modification in the stereochemistry is observed when the double bond is conjugated with a group that can stabilize a carbocation intermediate. Most of the specific cases involve an aryl substituent. Examples of alkenes that give primarily syn addition are Z- and -l-phenylpropene, Z- and - -<-butylstyrene, l-phenyl-4-/-butylcyclohex-ene, and indene. The mechanism proposed for these additions features an ion pair as the key intermediate. Because of the greater stability of the carbocations in these molecules, concerted attack by halide ion is not required for complete carbon-hydrogen bond formation. If the ion pair formed by alkene protonation collapses to product faster than reorientation takes place, the result will be syn addition, since the proton and halide ion are initially on the same side of the molecule. [Pg.355]

Reactions of alkynes with electrophiles are generally similar to those of alkenes. Because the HOMO of alkynes (acetylenes) is also of n type, it is not surprising that there IS a good deal of similarity between alkenes and alkynes in their reactivity toward electrophilic reagents. The fundamental questions about additions to alkynes include the following. How reactive are alkynes in comparison with alkenes What is the stereochemistry of additions to alkynes And what is the regiochemistry of additions to alkynes The important role of halonium ions and mercurinium ions in addition reactions of alkenes raises the question of whether similar species can be involved with alkynes, where the ring would have to include a double bond ... [Pg.371]

The di-TT-methane rearrangement is a stereospecific reaction. There are several elements of stereochemistry to be considered. It is known that the double bond that remains uncyclized retains the E or Z configuration present in the starting material. This result excludes any intermediate with a freely rotating terminal radical. The concerted... [Pg.778]

Benzene-sensitized photolysis of methyl 3-cyclohexene-1-carboxylate in acetic acid leads to addition of acetic acid to the double bond. Only the trans adducts are formed. What factor(s) is (are) responsible for the reaction stereochemistry Which of the two possible addition products, A or B, do you expect to be the major product ... [Pg.784]


See other pages where Stereochemistry double bond is mentioned: [Pg.313]    [Pg.65]    [Pg.825]    [Pg.313]    [Pg.65]    [Pg.825]    [Pg.88]    [Pg.660]    [Pg.28]    [Pg.159]    [Pg.181]    [Pg.349]    [Pg.378]    [Pg.224]    [Pg.225]    [Pg.122]    [Pg.314]    [Pg.311]    [Pg.181]    [Pg.150]    [Pg.440]    [Pg.97]    [Pg.4]    [Pg.105]    [Pg.172]    [Pg.150]    [Pg.163]    [Pg.96]    [Pg.165]    [Pg.312]    [Pg.313]    [Pg.376]   


SEARCH



Bond stereochemistry

Carbon-nitrogen bonds double, stereochemistry

Exocyclic double bonds, control stereochemistry

Stereochemistry at Double Bonds

Stereochemistry double bond additions

Steroid Nomenclature, Numbering, Double Bonds and Stereochemistry

© 2024 chempedia.info