Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereocenters importance

The direct goal of stereochemical strategies is the reduction of stereochemical complexity by the retrosynthetic elimination of the stereocenters in a target molecule. The greater the number and density of stereocenters in a TGT, the more influential such strategies will be. The selective removal of stereocenters depends on the availability of stereosimplifying transforms, the establishment of the required retrons (complete with defined stereocenter relationships), and the presence of a favorable spatial environment in the precursor generated by application of such a transform. The last factor, which is of crucial importance to stereoselectivity, mandates a bidirectional approach to stereosimplification which takes into account not only the TGT but also the retrosynthetic precursor, or reaction substrate. Thus both retrosynthetic and synthetic analyses are considered in the discussion which follows. [Pg.47]

Stereoelectronic control also plays a role in mechanistic stereoselectivity. One such case is the very fundamental 8 2 process which proceeds rigorously with inversion of configuration at carbon. Because of that intrinsic and predictable stereoselectivity, the C-C disconnective Sn2 displacement transform is very important even though it does not directly reduce the number of stereocenters, e.g. 153 => 154. [Pg.49]

The relationship between 20 and reserpine (1) is close like reserpine, intermediate 20 possesses the linear chain of all five rings and all six stereocenters. With the exception of the 3,4,5-tri-methoxybenzoate grouping, 20 differs from reserpine (1) in one very important respect the orientation of the ring C methine hydrogen at C-3 in 20 with respect to the molecular plane is opposite to that found in reserpine. Intermediate 20 is a reserpate stereoisomer, epimeric at position 3, and its identity was secured by comparison of its infrared spectrum with that of a sample of (-)-methyl-O-acetyl-isoreserpate, a derivative of reserpine itself.9 Intermediate 20 is produced by the addition of hydride to the more accessible convex face of 19, and it rests comfortably in a conformation that allows all of the large groups attached to the D/E ring skeleton to be equatorially disposed. [Pg.61]

The strained bicyclic carbapenem framework of thienamycin is the host of three contiguous stereocenters and several heteroatoms (Scheme 1). Removal of the cysteamine side chain affixed to C-2 furnishes /J-keto ester 2 as a possible precursor. The intermolecular attack upon the keto function in 2 by a suitable thiol nucleophile could result in the formation of the natural product after dehydration of the initial tetrahedral adduct. In a most interesting and productive retrosynthetic maneuver, intermediate 2 could be traced in one step to a-diazo keto ester 4. It is important to recognize that diazo compounds, such as 4, are viable precursors to electron-deficient carbenes. In the synthetic direction, transition metal catalyzed decomposition of diazo keto ester 4 could conceivably furnish electron-deficient carbene 3 the intermediacy of 3 is expected to be brief, for it should readily insert into the proximal N-H bond to... [Pg.250]

Chiral, nonracemic allylboron reagents 1-7 with stereocenters at Cl of the allyl or 2-butenyl unit have been described. Although these optically active a-substituted allylboron reagents are generally less convenient to synthesize than those with conventional auxiliaries (Section 1.3.3.3.3.1.4.), this disadvantage is compensated for by the fact that their reactions with aldehydes often occur with almost 100% asymmetric induction. Thus, the enantiomeric purity as well as the ease of preparation of these chiral a-substituted allylboron reagents are important variables that determine their utility in enantioselective allylboration reactions with achiral aldehydes, and in double asymmetric reactions with chiral aldehydes (Section 1.3.3.3.3.2.4.). [Pg.326]

This is all extremely important stuff. You will understand this as soon as you begin learning reactions. You will see that some reactions convert a stereocenter... [Pg.132]

Imagine that the two brothers are twins. They are identical in every way except one. One of them has a mole on his right cheek, and the other has a mole on his left cheek. This allows you to distinguish them from each other. They are mirror images of each other, but they don t look exactly the same (one cannot be superimposed on top of the other). It is very important to be able to see the relationship between different compounds. It is important to be able to draw enantiomers. Later in the course, you will see reactions where a stereocenter is created and both enantiomers are formed. To predict the products, you must be able to draw both enantiomers. In this section, we will see how to draw enantiomers. [Pg.149]

Don t get me wrong—it is very important to be able to predict whether a stereocenter gets inverted or not when a snbstitntion reaction takes place. That alone wonld have been enongh of a reason to learn all of the factors in this chapter. But I also want yon to keep yonr eye on some of the bigger picture issues. They will help you as you move through the course. [Pg.225]

In the discussion of the stereochemistry of aldol and Mukaiyama reactions, the most important factors in determining the syn or anti diastereoselectivity were identified as the nature of the TS (cyclic, open, or chelated) and the configuration (E or Z) of the enolate. If either the aldehyde or enolate is chiral, an additional factor enters the picture. The aldehyde or enolate then has two nonidentical faces and the stereochemical outcome will depend on facial selectivity. In principle, this applies to any stereocenter in the molecule, but the strongest and most studied effects are those of a- and (3-substituents. If the aldehyde is chiral, particularly when the stereogenic center is adjacent to the carbonyl group, the competition between the two diastereotopic faces of the carbonyl group determines the stereochemical outcome of the reaction. [Pg.86]

As discussed previously, West and coworkers developed a two-step domino process, which is initiated by a Nazarov reaction. This can be extended by an electrophilic substitution. Thus, reaction of 1-179 with TiCl4 led to 1-182 via the intermediate cations 1-180 and 1-181. The final product 1-183 is obtained after aqueous workup in 99% yield (Scheme 1.43) [23]. It is important to mention here that all six stereocenters were built up in a single process with complete diastereoselectivity hence, the procedure was highly efficient. [Pg.39]


See other pages where Stereocenters importance is mentioned: [Pg.2]    [Pg.7]    [Pg.9]    [Pg.16]    [Pg.19]    [Pg.25]    [Pg.26]    [Pg.51]    [Pg.71]    [Pg.81]    [Pg.125]    [Pg.57]    [Pg.69]    [Pg.100]    [Pg.103]    [Pg.110]    [Pg.142]    [Pg.192]    [Pg.199]    [Pg.229]    [Pg.246]    [Pg.258]    [Pg.283]    [Pg.288]    [Pg.294]    [Pg.301]    [Pg.303]    [Pg.308]    [Pg.308]    [Pg.321]    [Pg.534]    [Pg.555]    [Pg.679]    [Pg.769]    [Pg.320]    [Pg.791]    [Pg.1172]    [Pg.1335]    [Pg.2]    [Pg.222]    [Pg.174]   
See also in sourсe #XX -- [ Pg.132 ]

See also in sourсe #XX -- [ Pg.134 , Pg.135 ]

See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Stereocenter

© 2024 chempedia.info