Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Step polymerization copolymerization

A detailed description of AA, BB, CC step-growth copolymerization with phase separation is an involved task. Generally, the system we are attempting to model is a polymerization which proceeds homogeneously until some critical point when phase separation occurs into what we will call hard and soft domains. Each chemical species present is assumed to distribute itself between the two phases at the instant of phase separation as dictated by equilibrium thermodynamics. The polymerization proceeds now in the separate domains, perhaps at differen-rates. The monomers continue to distribute themselves between the phases, according to thermodynamic dictates, insofar as the time scales of diffusion and reaction will allow. Newly-formed polymer goes to one or the other phase, also dictated by the thermodynamic preference of its built-in chain micro — architecture. [Pg.175]

Step polymerization is used to synthesize multiblock copolymeric elastomers (referred to as segmented elastomers). An example is the polyester-polyurethane system produced by the reaction of a diisocyanate with a mixture of macro diol and smallsized diol (Eq. 14). The macro diol (usually referred to as a... [Pg.10]

It is highly unlikely that the reactivities of the various monomers would be such as to yield either block or alternating copolymes. The quantitative dependence of copolymer composition on monomer reactivities has been described [Korshak et al., 1976 Mackey et al., 1978 Russell et al., 1981]. The treatment is the same as that described in Chap. 6 for chain copolymerization (Secs. 6-2 and 6-5). The overall composition of the copolymer obtained in a step polymerization will almost always be the same as the composition of the monomer mixture since these reactions are carried out to essentially 100% conversion (a necessity for obtaining high-molecular-weight polymer). Further, for step copolymerizations of monomer mixtures such as in Eq. 2-192 one often observes the formation of random copolymers. This occurs either because there are no differences in the reactivities of the various monomers or the polymerization proceeds under reaction conditions where there is extensive interchange (Sec. 2-7c). The use of only one diacid or one diamine would produce a variation on the copolymer structure with either R = R" or R = R " [Jackson and Morris, 1988]. [Pg.138]

For most step polymerizations, for example, in the synthesis of polyl hexamethylene adipa-mide) or polyethylene terephthalate), two reactants or monomers are used in the process, and the polymer obtained contains two different kinds of structures in the chain. This is not the case for chain polymerizations, where only one monomer need be used to produce a polymer. However, chain polymerizations can be carried out with mixtures of two monomers to form polymeric products wiht two different structures in the polymer chain. This type of chain polymerization process in which two monomers are simultaneously polymerized is termed a copolymerization, and the product is a copolymer. It is important to stress that the copolymer is not an alloy of two homopolymers hut contains units of both monomers incorporated into each copolymer molecule. The process can be depicted as... [Pg.464]

Copolymerization is also important in step polymerization. Relatively few studies on step copolymerization have been carried out, although there are considerable commercial applications. Unlike the situation in chain copolymerization, the overall composition of the copolymer obtained in a step copolymerization is usually the same as the feed composition since step reactions must be carried out to close to 100% conversion for the synthesis of... [Pg.464]

Comparison of the Two Reactions Step-Growth Polymerization in More Detail Making PET in the Melt Interfacial Poly condensation Chain-Growth Polymerization in More Detail Free Radical Chain Polymerization Going One Step Better Emulsion Polymerization Copolymerization Ionic Chain Polymerization It Lives ... [Pg.289]

The polymerization described so far is homo-polymerization based on single monomers. Some polymers used in pharmaceutical applications are copolymers. They have properties that each homo-polymer does not exhibit. For example, the copolymer of hydroxyethyl methacrylate and methyl methacrylate is synthesized in order to obtain a polymer exhibiting a hydrophilic/hydrophobic balance. A variety of copolymers (alternating, block, random) can be formed from two different monomers. Special processes produce alternating and block copolymers, while random copolymers are produced by free-radical copolymerization of two monomers. The polymerization steps, such as initiation, propagation, and termination, are the same as in free-radical homo-polymerization. Copolymerization kinetics are depicted as follows ... [Pg.454]

Kinetic aspects of step-growth copolymerization have been examined in Section 10.2.2. The principal features of chain-growth copolymerization are very different, but are alike for all types of chain growth, that is, for free-radical, anionic, cationic, and coordination polymerization. [Pg.340]

Step-growth copolymerization involves the use of three or more monomers which do not ordinarily all react with each other. Examples include mixtures of acids and polyols in the synthesis of alkyds, as illustrated in the recipes in Table 5-1. Such polymers will contain a random distribution of monomer residues if they are synthesized under conditions in which the polymerization is reversible and the molecular weight distribution is random. Polymers like alkyds are intended to be homogeneous products with properties which represent an average of those of all the component monomers. The copolymerization of linolcic acid in the recipe in Table 5-1 would confer air-drying properties on all the macromolccules in which it is incorporated. [Pg.184]

ABA type triblock copolymerization of MMA/BuA/MMA should give rubberlike elastic polymers. The resulting copolymers should have two vitreous outer blocks, where the poly(MMA) moiety (hard segment) associates with the nodules, and the central soft poly(BuA) elastomeric block provides rubber elasticity. The first step polymerization of MM A gave Mn of 15,000 with Mw/Mn=1.04 and then a mixture of MMA and BuA was added to this growing end to result in the formation of desired ABA triblock copolymer (BuA polymerized more rapidly than MMA) (Fig. 8). Table 4 shows the typical mechanical properties of the ABA... [Pg.206]


See other pages where Step polymerization copolymerization is mentioned: [Pg.218]    [Pg.218]    [Pg.755]    [Pg.757]    [Pg.150]    [Pg.505]    [Pg.453]    [Pg.465]    [Pg.521]    [Pg.524]    [Pg.264]    [Pg.930]    [Pg.91]    [Pg.51]    [Pg.10]    [Pg.160]    [Pg.7]    [Pg.117]    [Pg.85]    [Pg.633]    [Pg.164]    [Pg.51]    [Pg.269]    [Pg.106]    [Pg.191]    [Pg.465]    [Pg.521]    [Pg.524]   
See also in sourсe #XX -- [ Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 ]

See also in sourсe #XX -- [ Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 ]




SEARCH



Chain copolymerization step polymerization

Copolymerization polymerization

Polymerization copolymerizations

Step copolymerization

Step polymerization

Step-growth polymerization copolymerizations

© 2024 chempedia.info