Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Starting material, molecular weight

In attempts to isolate the aforementioned irradiated products of thymine derivatives at lower temperature, the photochemical reactions were carried out in frozen aqueous solutions containing either thymine or 1,3-dimethylthymine. The resulting products were not hydrates, but had elementary analyses corresponding to the starting material. Molecular weight determination indicated that the products were dimers, and infrared and ultraviolet spectral data suggested cyclo addition across the 5,6-double bond to form a cyclobutane system... [Pg.314]

The chemical characteristics of the starting low-molecular-weight species will determine the properties of the final polymer. The properties of different polymers can vary widely. Properties can be varied for each individual plastic material as well, simply by varying the microstructure of the material. In its solid form a polymer can take up different structures depending on the structure of the polymer chain as well as the processing conditions. [Pg.435]

Almost any hydrocarbon can serve as a starting material for production of ethylene and propene Cracking of petroleum (Section 2 16) gives ethylene and propene by processes involving cleavage of carbon-carbon bonds of higher molecular weight hydrocarbons... [Pg.189]

Many low molecular weight aldehydes and ketones are important industrial chem icals Formaldehyde a starting material for a number of plastics is prepared by oxida tion of methanol over a silver or iron oxide/molybdenum oxide catalyst at elevated temperature... [Pg.711]

Amide interchange reactions of the type represented by reaction 3 in Table 5.4 are known to occur more slowly than direct amidation nevertheless, reactions between high and low molecular weight polyamides result in a polymer of intermediate molecular weight. The polymer is initially a block copolymer of the two starting materials, but randomization is eventually produced. [Pg.307]

Cblorina.ted Pa.ra.ffins, The term chlotinated paraffins covers a variety of compositions. The prime variables are molecular weight of the starting paraffin and the chlorine content of the final product. Typical products contain from 12—24 carbons and from 40—70 wt % chlorine. Liquid chlotinated paraffins are used as plasticizers (qv) and flame retardants ia paint (qv) and PVC formulations. The soHd materials are used as additive flame retardants ia a variety of thermoplastics. In this use, they are combiaed with antimony oxide which acts as a synergist. Thermal stabilizers, such as those used ia PVC (see vinyl polymers), must be used to overcome the inherent thermal iastabiUty. [Pg.469]

Phosphoric acid [7664-38-2] and its derivatives are effective catalysts for this reaction (60). Reverse alcoholysis and acidolysis can, in principle, also be used to produce polyamides, and the conversion of esters to polyamides through their reaction within diamines, reverse alcoholysis, has been demonstrated (61). In the case of reverse acidolysis, the acid by-product is usually less volatile than the diamine starting material. Thus, this route to the formation of polyamide is not likely to yield a high molecular weight polymer. [Pg.225]

Oxidation. AH polyamides are susceptible to oxidation. This involves the initial formation of a free radical on the carbon alpha to the NH group, which reacts to form a peroxy radical with subsequent chain reactions leading to chain scission and yellowing. As soon as molten nylon is exposed to air it starts to discolor and continues to oxidize until it is cooled to below 60°C. It is important, therefore, to minimize the exposure of hot nylon to air to avoid discoloration or loss of molecular weight. Similarly, nylon parts exposed to high temperature in air lose their properties with time as a result of oxidation. This process can be minimized by using material containing stabilizer additives. [Pg.270]

The degree of polymerization is dictated by the ratio of Hquid resin (cmde DGEBPA) to bisphenol A an excess of the former provides epoxy terminal groups. The actual molecular weights attained depend on the purity of the starting material. Reactive monofunctional groups act as chain terrninators. [Pg.366]

The earliest SIS block copolymers used in PSAs were nominally 15 wt% styrene, with an overall molecular weight on the order of 200,000 Da. The preparation by living anionic polymerization starts with the formation of polystyryl lithium, followed by isoprene addition to form the diblock anion, which is then coupled with a difunctional agent, such as 1,2-dibromoethane to form the triblock (Fig. 5a, path i). Some diblock material is inherently present in the final polymer due to inefficient coupling. The diblock is compatible with the triblock and acts... [Pg.480]

Another important synthetic method for the reduction of ketones and aldehydes to the corresponding methylene compounds is the Woljf-Kishner reduction. This reaction is carried out under basic conditions, and therefore can be applied for the reduction of acid-sensitive substrates it can thus be regarded as a complementary method. The experimental procedure for the Clemmensen reduction is simpler however for starting materials of high molecular weight the Wolff-Kishner reduction is more successful. [Pg.63]

A limitation to the more widespread use of membrane separation processes is membrane fouling, as would be expected in the industrial application of such finely porous materials. Fouling results in a continuous decline in membrane penneation rate, an increased rejection of low molecular weight solutes and eventually blocking of flow channels. On start-up of a process, a reduction in membrane permeation rate to 30-10% of the pure water permeation rate after a few minutes of operation is common for ultrafiltration. Such a rapid decrease may be even more extreme for microfiltration. This is often followed by a more gradual... [Pg.376]


See other pages where Starting material, molecular weight is mentioned: [Pg.389]    [Pg.389]    [Pg.389]    [Pg.67]    [Pg.389]    [Pg.389]    [Pg.389]    [Pg.389]    [Pg.67]    [Pg.389]    [Pg.250]    [Pg.4]    [Pg.266]    [Pg.232]    [Pg.245]    [Pg.219]    [Pg.219]    [Pg.270]    [Pg.307]    [Pg.192]    [Pg.266]    [Pg.238]    [Pg.35]    [Pg.189]    [Pg.8]    [Pg.43]    [Pg.824]    [Pg.502]    [Pg.116]    [Pg.221]    [Pg.266]    [Pg.155]    [Pg.68]    [Pg.85]    [Pg.2]    [Pg.498]    [Pg.77]    [Pg.135]    [Pg.136]    [Pg.137]    [Pg.139]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Molecular materials

Weight material

© 2024 chempedia.info