Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spin traps complexes

Samsonova and Nikiforov, 1984), and porphyrin and phthalocyanine metal complexes (Becker et al., 1985a, 1986b Becker and Grossmann, 1990) were tested. That a series of relatively simple anions such as the oxalate monoanion, tetraphenyl bor-anate (Ph4B ), bromide, chloride, and even tetrafluoroborate can act as donors is, at least for the last mentioned anion, surprising, but Becker et al. (1985 b) were able to trap aryl radicals and in some cases also donor radicals (Cl, COO ) by spin trapping with nitrosodurene and phenyl-tert-butylnitrone. The photochemical effect is postulated to be due to ion pairs ArNJ X-. [Pg.281]

In related work, the reactions of hydrogen peroxide with iron(II) complexes, including Feu(edta), were examined.3 Some experiments were carried out with added 5.5"-dimethyl-1-pyrroline-N-oxide (DMPO) as a trapping reagent fa so-called spin trap) for HO. These experiments were done to learn whether HO was truly as free as it is when generated photochemically. The hydroxyl radical adduct was indeed detected. but for some (not all) iron complexes evidence was obtained for an additional oxidizing intermediate, presumably an oxo-iron complex. [Pg.102]

The presence of /3-hydrogen in the nitroxide radical may lead to disproportionation reactions. In spin-trapping experiments, N-t-butyl-a-phenyl nitrone yields rather unstable spin adducts. This type of radical can be stabilized by coordination to Nin. The Ni11 complex with N-oxy-A-r-butyl-(2-pyridyl)phenylmethanamine (923) reveals a distorted octahedral geometry with antiferromagnetic interactions between the unpaired electrons of the metal ion and the radical spins.00... [Pg.480]

Spin trapping methods were also used to show that when carotenoid-P-cyclodextrin 1 1 inclusion complex is formed (Polyakov et al. 2004), cyclodextrin does not prevent the reaction of carotenoids with Fe3+ ions but does reduce their scavenging rate toward OOH radicals. This implies that different sites of the carotenoid interact with free radicals and the Fe3+ ions. Presumably, the OOH radical attacks only the cyclohexene ring of the carotenoid. This indicates that the torus-shaped cyclodextrins, Scheme 9.6, protects the incorporated carotenoids from reactive oxygen species. Since cyclodextrins are widely used as carriers and stabilizers of dietary carotenoids, this demonstrates a mechanism for their safe delivery to the cell membrane before reaction with oxygen species occurs. [Pg.167]

Electron transfer, in thermal and photochemical activation of electron donor-acceptor complexes in organic and organometallic reactions, 29,185 Electron-transfer, single, and nucleophilic substitution, 26,1 Electron-transfer, spin trapping and, 31,91 Electron-transfer paradigm for organic reactivity, 35, 193... [Pg.337]

As shown above, addition of H202 into a solution of the complex caused a prompt color change into blue to give hydroxyl radical, which was detected with a spin-trapping method. The reaction was found therefore to be a Fenton-like reaction. [Pg.409]

Other complexities are revealed when frozen solutions of spin trap in methanol are irradiated, and the solution is then melted. The proportions of spin adducts are markedly dependent on radiolysis temperature. One contributory factor is undoubtedly the reaction of MeO with neighbouring methanol in the solid matrix, to produce HOCH2, before diffusion to reach spin-trap molecules is possible. [Pg.39]

Photochemical spin trapping experiments are the stock in trade, and the most difficult ones to judge with respect to mechanism because of their high complexity. The method became popular at a time when the effect of light upon molecules was believed to result mainly in homolysis of bonds, principally because of its ready use in combination with epr spectroscopy and... [Pg.118]

The formation of the trinitromethyl adduct of PBN by photolysis of PBN and tetranitromethane (Okhlobystina et al., 1975) is an unequivocal case of inverted spin trapping. These components give an orange-red CT complex in, for example, dichloromethane when this solution is irradiated by light which only can excite the CT complex (A > 430 nm) the spin adduct (N02)3C-PBN is formed via reaction (46) (Eberson et al., 1994b). This adduct is highly persistent. When the solution is acidified by —2% trifluoroacetic acid, irradiation does not lead to spin adduct formation owing to protonation of trinitromethanide ion. [Pg.123]

In summary, the copper ion transfers an electron from the unsaturated substrate to the diazo-nium cation, and the newly formed diazonium radical quickly loses nitrogen. The aryl radical formed attacks the ethylenic bond within the active complexes that originated from aryldiazo-nium tetrachlorocuprate(II)-olefin or initial arydiazonium salt-catalyst-olefln associates and yields >C(Ar)-C < radical. The latter was detected by the spin-trap ESR spectroscopy. The formation of both the cation-radical [>C=C<] and radical >C(Ar)-C < as intermediates indicates that the reaction involves two catalytic cycles. In the other case, radical >C(Ar)-C < will not be formed, being consumed in the following reaction ... [Pg.263]

Reported rate constants for the reaction of 02 with GSH have varied from 102 to > 105 M 1 s. A re-examination of this reaction by spin trapping with DMPO established that earlier studies had been confounded by the direct reduction of the DMPO/ OOH adduct to DMPO/ OH by GSH. Taking account of this reaction, the revised rate constant was reported to be 200 M-1 g-i.25i.2S2 other workers have examined, for example, the effects of GSH and N-acetyl-L-cysteine on lipid peroxidation 253 and the role of GS in the toxicity of the diabetogenic agent alloxan.254 Direct EPR has been used to detect binuclear Cu(II) complexes of homocysteine. The interactions of such complexes with blood-vessel linings may account for the link between elevated homocysteine and atherosclerosis.255... [Pg.57]

In studies of reaction pathways, nitrosyl radicals are frequently used as spin traps to provide evidence for free radical pathways. A caution in interpretation of these results is that the probe or products will interact with the transition metal complex in the reaction and affect the reactivity of the probe with the organic substrate or free radicals produced. A number of reactions of the stable free radicals RNO and R2NO with platinum(II) complexes have been carried out which show that such reactions must indeed be considered (equations 473-... [Pg.469]


See other pages where Spin traps complexes is mentioned: [Pg.101]    [Pg.108]    [Pg.167]    [Pg.171]    [Pg.805]    [Pg.149]    [Pg.13]    [Pg.41]    [Pg.369]    [Pg.104]    [Pg.126]    [Pg.136]    [Pg.301]    [Pg.163]    [Pg.262]    [Pg.224]    [Pg.535]    [Pg.94]    [Pg.971]    [Pg.1203]    [Pg.123]    [Pg.971]    [Pg.1203]    [Pg.806]    [Pg.35]    [Pg.41]    [Pg.43]    [Pg.52]    [Pg.62]    [Pg.66]    [Pg.184]    [Pg.298]    [Pg.367]    [Pg.398]    [Pg.216]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Spin trapping

Spin-trapped

© 2024 chempedia.info