Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral function linear response theory

The linear response theory [50,51] provides us with an adequate framework in order to study the dynamics of the hydrogen bond because it allows us to account for relaxational mechanisms. If one assumes that the time-dependent electrical field is weak, such that its interaction with the stretching vibration X-H Y may be treated perturbatively to first order, linearly with respect to the electrical field, then the IR spectral density may be obtained by the Fourier transform of the autocorrelation function G(t) of the dipole moment operator of the X-H bond ... [Pg.247]

The strategy, usually adopted to achieve a theoretical description of this complex dynamics, is to describe the influence of the solvent environment on the electron-transfer reaction within linear response theory [5, 26, 196, 197] as linear coupling to a bath of harmonic oscillators. Within this model, all properties of the bath enter through a single function called the spectral density [5, 168]... [Pg.266]

The paper [50] was written, when our general linear response-theory (ACF method) was still in progress, so the derivation of the spectral function described in Ref. 50 is more specialized than that given, for example, in VIG and GT. [Pg.157]

Validity of our formulas for the resonance lines, which express the complex susceptibility through the spectral function, could be confirmed as follows. We have obtained an exact coincidence of the equations (353), (370), (371), which were (i) directly calculated here in terms of the harmonic oscillator model and (ii) derived in GT and VIG (see also Section II, A.6) by using a general linear-response theory. [Pg.270]

Let us first consider spectroscopy. Linear-response theory, in particular the fluctuation dissipation theorem - which relates the absorption of an incident monochromatic field to the correlation function of (e.g. dipole) fluctuations in equilibrium - has changed our perspective on spectroscopy of dense media. It has moved away from a static Schrodinger picture -phrased in terms of transitions between immutable (but usually incomputable) quantum levels - to a dynamic Heisenberg picture, in which the spectral line shape is related by Fourier transform to a correlation function that describes the decay of fluctuations. Of course, any property that cannot be computed in the Schrodinger picture, cannot be computed in the Heisenberg picture either however, correlation functions, unlike wave-functions, have a clear meaning in the classical limit. This makes it much easier to come up with simple (semi) classical interpretations and approximations. [Pg.76]

Another approach to the calculation of IR spectra of hydrogen-bonded complexes is based on linear response theory, in which the spectral density is the Fourier transform of the autocorrelation function of the dipole moment operator involved in the IR transition [62,63]. Recently Car-Parrinello molecular dynamics (CPMD) [73] has been used to simulate IR spectra of hydrogen-bonded systems [64-72]. [Pg.308]

In this chapter, dielectric response of only isotropic medium is considered. However, in a local-order scale, such a medium is actually anisotropic. The anisotropy is characterized by a local axially symmetric potential. Spatial motion of a dipole in such a potential can be represented as a superposition of oscillations (librations) in a symmetry-axis plane and of a dipole s precession about this axis. In our theory this anisotropy is revealed as follows. The spectral function presents a linear combination of the transverse (K ) and the longitudinal (K ) spectral functions, which are found, respectively, for the parallel and the transverse orientations of the potential symmetry axis with... [Pg.75]

A general approach (VIG, GT) to a linear-response analytical theory, which is used in our work, is viewed briefly in Section V.B. In Section V.C we consider the main features of the hat-curved model and present the formulae for its dipolar autocorrelator—that is, for the spectral function (SF) L(z). (Until Section V.E we avoid details of the derivation of this spectral function L). Being combined with the formulas, given in Section V.B, this correlator enables us to calculate the wideband spectra in liquids of interest. In Section V.D our theory is applied to polar fluids and the results obtained will be summarized and discussed. [Pg.158]

In our variant of the response theory the spectral function (SF) L(z) of the model is linearly related to the spectrum of the dipole autocorrelation function (ACF). [Pg.432]

The Golden Rule formula (9.5) for the mean rate constant assumes the Unear response regime of solvent polarization and is completely equivalent in this sense to the result predicted by the spin-boson model, where a two-state electronic system is coupled to a thermal bath of harmonic oscillators with the spectral density of relaxation J(o)) [38,71]. One should keep in mind that the actual coordinates of the solvent are not necessarily harmonic, but if the collective solvent polarization foUows the Unear response, the system can be effectively represented by a set of harmonic oscillators with the spectral density derived from the linear response function [39,182]. Another important point we would like to mention is that the Golden Rule expression is in fact equivalent [183] to the so-called noninteracting blip approximation [71] often used in the context of the spin-boson model. The perturbation theory can be readily applied to... [Pg.518]


See other pages where Spectral function linear response theory is mentioned: [Pg.286]    [Pg.154]    [Pg.179]    [Pg.217]    [Pg.247]    [Pg.380]    [Pg.197]    [Pg.313]    [Pg.141]    [Pg.366]    [Pg.289]    [Pg.224]    [Pg.143]    [Pg.6732]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Linear functional

Linear functionals

Linear functions

Linear response

Linear response function

Linear response theory

Linear response theory functions

Linear theory

Linearized theory

Response function theory

Response functions

Response theories

Spectral function

Spectral functions function

Spectral response

© 2024 chempedia.info