Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral density linear response theory

The Spectral Density Within the Linear Response Theory... [Pg.241]

The linear response theory [50,51] provides us with an adequate framework in order to study the dynamics of the hydrogen bond because it allows us to account for relaxational mechanisms. If one assumes that the time-dependent electrical field is weak, such that its interaction with the stretching vibration X-H Y may be treated perturbatively to first order, linearly with respect to the electrical field, then the IR spectral density may be obtained by the Fourier transform of the autocorrelation function G(t) of the dipole moment operator of the X-H bond ... [Pg.247]

The strategy, usually adopted to achieve a theoretical description of this complex dynamics, is to describe the influence of the solvent environment on the electron-transfer reaction within linear response theory [5, 26, 196, 197] as linear coupling to a bath of harmonic oscillators. Within this model, all properties of the bath enter through a single function called the spectral density [5, 168]... [Pg.266]

Within the linear response theory [28] the spectral density I (co) is given by... [Pg.252]

Here we apply the LAND-map approach to compute of the time dependent average population difference, A t) = az t)), between the spin states of a spin-boson model. Here az = [ 1)(1 — 2)(2 ]. Within the limits of linear response theory, this model describes the dissipative dynamics of a two level system coupled to an environment [59,63-65]. The environment is represented by an infinite set of harmonic oscillators, linearly coupled to the quantum subsystem. The characteristics of the system-bath coupling are completely described by the spectral density J(w). In the following, we shall restrict ourselves to the case of an Ohmic spectral density... [Pg.577]

Another approach to the calculation of IR spectra of hydrogen-bonded complexes is based on linear response theory, in which the spectral density is the Fourier transform of the autocorrelation function of the dipole moment operator involved in the IR transition [62,63]. Recently Car-Parrinello molecular dynamics (CPMD) [73] has been used to simulate IR spectra of hydrogen-bonded systems [64-72]. [Pg.308]

An important achievement of the early theories was the derivation of the exact quantum mechanical expression for the ET rate in the Fermi Golden Rule limit in the linear response regime by Kubo and Toyozawa [4b], Levich and co-workers [20a] and by Ovchinnikov and Ovchinnikova [21], in terms of the dielectric spectral density of the solvent and intramolecular vibrational modes of donor and acceptor complexes. The solvent model was improved to take into account time and space correlation of the polarization fluctuations [20,21]. The importance of high-frequency intramolecular vibrations was fully recognized by Dogonadze and Kuznetsov [22], Efrima and Bixon [23], and by Jortner and co-workers [24,25] and Ulstrup [26]. It was shown that the main role of quantum modes is to effectively reduce the activation energy and thus to increase the reaction rate in the inverted... [Pg.513]

The Golden Rule formula (9.5) for the mean rate constant assumes the Unear response regime of solvent polarization and is completely equivalent in this sense to the result predicted by the spin-boson model, where a two-state electronic system is coupled to a thermal bath of harmonic oscillators with the spectral density of relaxation J(o)) [38,71]. One should keep in mind that the actual coordinates of the solvent are not necessarily harmonic, but if the collective solvent polarization foUows the Unear response, the system can be effectively represented by a set of harmonic oscillators with the spectral density derived from the linear response function [39,182]. Another important point we would like to mention is that the Golden Rule expression is in fact equivalent [183] to the so-called noninteracting blip approximation [71] often used in the context of the spin-boson model. The perturbation theory can be readily applied to... [Pg.518]


See other pages where Spectral density linear response theory is mentioned: [Pg.286]    [Pg.380]    [Pg.366]    [Pg.104]    [Pg.470]    [Pg.224]    [Pg.59]   
See also in sourсe #XX -- [ Pg.252 , Pg.253 ]




SEARCH



Linear response

Linear response theory

Linear theory

Linearized theory

Response theories

Spectral density

Spectral response

© 2024 chempedia.info