Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specificity pocket

Figure 11.6 A schematic view of the presumed binding mode of the tetrahedral transition state intermediate for the deacylation step. The four essential features of the serine proteinases are highlighted in yellow the catalytic triad, the oxyanion hole, the specificity pocket, and the unspecific main-chain substrate binding. Figure 11.6 A schematic view of the presumed binding mode of the tetrahedral transition state intermediate for the deacylation step. The four essential features of the serine proteinases are highlighted in yellow the catalytic triad, the oxyanion hole, the specificity pocket, and the unspecific main-chain substrate binding.
Even though these enzymes have no absolute specificity, many of them show a preference for a particular side chain before the scissile bond as seen from the amino end of the polypeptide chain. The preference of chymotrypsin to cleave after large aromatic side chains and of trypsin to cleave after Lys or Arg side chains is exploited when these enzymes are used to produce peptides suitable for amino acid sequence determination and fingerprinting. In each case, the preferred side chain is oriented so as to fit into a pocket of the enzyme called the specificity pocket. [Pg.209]

This inhibitor does not form a covalent bond to Ser 195 but one of its carboxy oxygen atoms is in the oxyanion hole forming hydrogen bonds to the main-chain NH groups of residues 193 and 195. The tyrosyl side chain is positioned in the specificity pocket, which derives its specificity mainly from three residues, 216, 226, and 189, as we shall see later. The main chain of... [Pg.211]

Figure 11.9 A diagram of the active site of chymotrypsin with a bound inhibitor, Ac-Pro-Ala-Pro-Tyr-COOH. The diagram illustrates how this inhibitor binds in relation to the catalytic triad, the strbstrate specificity pocket, the oxyanion hole and the nonspecific substrate binding region. The Inhibitor is ted. Hydrogen bonds between Inhibitor and enzyme are striped. (Adapted from M.N.G. James et al., /. Mol. Biol. 144 43-88, 1980.)... Figure 11.9 A diagram of the active site of chymotrypsin with a bound inhibitor, Ac-Pro-Ala-Pro-Tyr-COOH. The diagram illustrates how this inhibitor binds in relation to the catalytic triad, the strbstrate specificity pocket, the oxyanion hole and the nonspecific substrate binding region. The Inhibitor is ted. Hydrogen bonds between Inhibitor and enzyme are striped. (Adapted from M.N.G. James et al., /. Mol. Biol. 144 43-88, 1980.)...
Different side chains in the substrate specificity pocket confer preferential cleavage... [Pg.212]

The serine proteinases all have the same substrate, namely, polypeptide chains of proteins. However, different members of the family preferentially cleave polypeptide chains at sites adjacent to different amino acid residues. The structural basis for this preference lies in the side chains that line the substrate specificity pocket in the different enzymes. [Pg.212]

Figure 11.10 Topological diagram of the two domains of chymotrypsin, illustrating that the essential active-site residues are part of the same two loop regions (3-4 and 5-6, red) of the two domains. These residues form the catalytic triad, the oxyanion hole (green), and the substrate binding regions (yellow and blue) including essential residues in the specificity pocket. Figure 11.10 Topological diagram of the two domains of chymotrypsin, illustrating that the essential active-site residues are part of the same two loop regions (3-4 and 5-6, red) of the two domains. These residues form the catalytic triad, the oxyanion hole (green), and the substrate binding regions (yellow and blue) including essential residues in the specificity pocket.
Residue 189 is at the bottom of the specificity pocket. In trypsin the Asp residue at this position interacts with the positively charged side chains Lys or Arg of a substrate. This accounts for the preference of trypsin to cleave adjacent to these residues. In chymotrypsin there is a Ser residue at position 189, which does not interfere with the binding of the substrate. Bulky aromatic groups are therefore preferred by chymotrypsin since such side chains fill up the mainly hydrophobic specificity pocket. It has now become clear, however, from site-directed mutagenesis experiments that this simple picture does not tell the whole story. [Pg.213]

Figure 11.11 Schematic diagrams of the specificity pockets of chymotrypsin, trypsin and elastase, illustrating the preference for a side chain adjacent to the scisslle bond In polypeptide substrates. Chymotrypsin prefers aromatic side chains and trypsin prefers positively charged side chains that can interact with Asp 189 at the bottom of the specificity pocket. The pocket is blocked in elastase, which therefore prefers small uncharged side chains. Figure 11.11 Schematic diagrams of the specificity pockets of chymotrypsin, trypsin and elastase, illustrating the preference for a side chain adjacent to the scisslle bond In polypeptide substrates. Chymotrypsin prefers aromatic side chains and trypsin prefers positively charged side chains that can interact with Asp 189 at the bottom of the specificity pocket. The pocket is blocked in elastase, which therefore prefers small uncharged side chains.
Engineered mutations in the substrate specificity pocket change the rate of catalysis... [Pg.213]

Model building also predicts that the Ala 216 mutant would displace a water molecule at the bottom of the specificity pocket that in the wild type enzyme binds to the NH3 group of the substrate Lys side chain (Figure 11.12). The extra CH3 group of this mutant is not expected to disturb the binding of the Arg side chain. One would therefore expect that the Km for Lys... [Pg.213]

Asp 189 at the bottom of the substrate specificity pocket interacts with Lys and Arg side chains of the substrate, and this is the basis for the preferred cleavage sites of trypsin (see Figures 11.11 and 11.12). It is almost trivial to infer, from these observations, that a replacement of Asp 189 with Lys would produce a mutant that would prefer to cleave substrates adjacent to negatively charged residues, especially Asp. On a computer display, similar Asp-Lys interactions between enzyme and substrate can be modeled within the substrate specificity pocket but reversed compared with the wild-type enzyme. [Pg.215]

Figure 11.14 Schematic diagram of the active site of subtilisin. A region (residues 42-45) of a bound polypeptide inhibitor, eglin, is shown in red. The four essential features of the active site— the catalytic triad, the oxyanion hole, the specificity pocket, and the region for nonspecific binding of substrate—are highlighted in yellow. Important hydrogen bonds between enzyme and inhibitor are striped. This figure should be compared to Figure 11.9, which shows the same features for chymotrypsin. (Adapted from W. Bode et al., EMBO /. Figure 11.14 Schematic diagram of the active site of subtilisin. A region (residues 42-45) of a bound polypeptide inhibitor, eglin, is shown in red. The four essential features of the active site— the catalytic triad, the oxyanion hole, the specificity pocket, and the region for nonspecific binding of substrate—are highlighted in yellow. Important hydrogen bonds between enzyme and inhibitor are striped. This figure should be compared to Figure 11.9, which shows the same features for chymotrypsin. (Adapted from W. Bode et al., EMBO /.
Serine proteinases such as chymotrypsin and subtilisin catalyze the cleavage of peptide bonds. Four features essential for catalysis are present in the three-dimensional structures of all serine proteinases a catalytic triad, an oxyanion binding site, a substrate specificity pocket, and a nonspecific binding site for polypeptide substrates. These four features, in a very similar arrangement, are present in both chymotrypsin and subtilisin even though they are achieved in the two enzymes in completely different ways by quite different three-dimensional structures. Chymotrypsin is built up from two p-barrel domains, whereas the subtilisin structure is of the a/p type. These two enzymes provide an example of convergent evolution where completely different loop regions, attached to different framework structures, form similar active sites. [Pg.219]

Mutations in the specificity pocket of trypsin, designed to change the substrate preference of the enzyme, also have drastic effects on the catalytic rate. These mutants demonstrate that the substrate specificity of an enzyme and its catalytic rate enhancement are tightly linked to each other because both are affected by the difference in binding strength between the transition state of the substrate and its normal state. [Pg.219]

Stams T, Spurlino JC, Smith DL, Wahl RC, Ho TF, Qoronfleh MW, Banks TM. Structure of human neutrophil collagenase reveals large Si specificity pocket. Nat Struct Biol 1994 1 119-123. [Pg.91]

Also related to Src kinase structural biology have been studies on two SFKs, namely Lck and Fyn. Importantly, the X-ray structure of Lck kinase was the first SFK determined [64] as complexes with AMP-PNP, staurosporine and PP2. Furthermore, a Fyn kinase-staurosporine complex has been recently described [65]. Extrapolating from the above Src kinase inhibitor crystal structures with respect to the hydrophobic specificity pocket and the active conformation of the protein to bind ATP-competitive inhibitors of varying templates and functional group elaboration, a working hypothesis of known Src kinase inhibitors (vide infra) can be suggested (Fig. 4). [Pg.390]

In this article, recent examples of small molecule inhibitors interacting at the fibrinogen primary specificity pocket and with residues of the catalytic triad... [Pg.247]

Inhibitors Binding at the Primary Specificity Pocket and Active She... [Pg.249]


See other pages where Specificity pocket is mentioned: [Pg.209]    [Pg.212]    [Pg.213]    [Pg.213]    [Pg.214]    [Pg.214]    [Pg.217]    [Pg.322]    [Pg.416]    [Pg.305]    [Pg.13]    [Pg.87]    [Pg.312]    [Pg.277]    [Pg.121]    [Pg.331]    [Pg.332]    [Pg.289]    [Pg.158]    [Pg.391]    [Pg.394]    [Pg.105]    [Pg.300]    [Pg.20]    [Pg.248]    [Pg.257]   
See also in sourсe #XX -- [ Pg.213 , Pg.214 ]

See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Crucial specificity pocket

Mutant, specificity pocket

POCKET

© 2024 chempedia.info