Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specifications of stereochemistry

All constitutive elements of a compound having been duly considered in compliance with the existing rules, still another set of descriptors has to be envisaged to account properly for all stereochemical features involved. Definitive status has already been attained by the rules for characterizing cisitrans isomers, stereogenic (formerly asymmetric) centers, and exolendo relationships in bicyclic compounds, as will be outlined in subsequent sections. A unified procedure for the treatment of other stereogenic units will be given at the end of this chapter. [Pg.186]


The structure of nonactin is shown below without any specification of stereochemistry. It is isolated as a pure substance from natural sources and gives no indication of being a mixture of stereoisomers. Although it is not optically active, it does not appear to be a racemic mixture, because it does not yield separate peaks on chiral HPLC columns. When completely hydrolyzed, it yields racemic nonactic acid. Deduce the stereochemical structure of nonactin from this information. [Pg.244]

Besides specifications on atoms, bonds, branches, and ring closure, SLN additionally provides information on attributes of atoms and bonds, such as charge or stereochemistry. These are also indicated in square [ ] or angle < > brackets behind the entity e.g., trans-butane CH3CH=[s=t]CHCH3). Furthermore, macro atoms allow the shorthand specification of groups of atoms such as amino adds, e.g., Ala, Protein2, etc. A detailed description of these specifications and also specifications for 2D substructure queries or combinatorial libraries can be found in the literature [26]. [Pg.29]

Many classes of natural product possess heterocyclic components (e.g. alkaloids, carbohydrates). However, their structures are often complex, and although structure-based names derived by using the principles outlined in the foregoing sections can be devised, such names tend to be impossibly cumbersome. Furthermore, the properties of complex natural product structures are often closely bound up with their stereochemistry, and for a molecule containing a number of asymmetric elements the specification of a particular stereoisomer by using the fundamental descriptors (R/S, EjZ) is a job few chemists relish. [Pg.28]

Aspartic acid at 20°C rotates the plane of polarization to the right, [a] D20 = + 4.36° but with the increase in temperature, the plane of polarization is rotated to the left, [a] D90 = -1.86° although the configuration of the antipode remains unchanged. Therefore, determination of the configuration of the isomers is a specific area of stereochemistry. The reader at this state must understand the logic to tackle this problems, the experimental techniques employed have been given later. [Pg.129]

In large measure, the problem associated with the execution of a stereoselective aldol condensation has been reduced to the generation of a specific enolate geometry. The recent results of Kuwajima (66a), which demonstrate that enolsilanes may be transformed into boryl enolates without apparent loss of stereochemistry (eq. [53]), should enhance the utility of vinyloxyboranes in stereoselective synthesis. The only current drawback to this procedure is associated with the presence of trimethylsilyl triflate (69), which must be removed from the reaction medium before the aldol condensation. It has recently been established that 69 is an effective catalyst for the aldol process (4). [Pg.50]

The experimental ratio of ds- to trans-cyclopropane 43 46, i.e. the stereo-specifity of the reaction cannot be considered as a simple indication of singlet or triplet percentage of RaC , since the stereochemistry of the cyclo-addition depends on many factors. Photolysis produces the exdted 5i-state of the diazoalkane 41. This compound can lose nitrogen and form the singlet carbene 42 (So-state). 42 can add directly in a stereospecific manner if ki is large. If, however, intersystem crossing 42 45 (Aisc is large) competes favorably with... [Pg.118]

The successful mechanism for a reaction is a theory that correlates the many facts which have been discovered and is fruitful for the prediction of new experiments (1). One approach to mechanism is the study of stereochemistry which seeks information concerning the geometrical relationships between the reactants at the critical stages in the reaction. Information is gleaned from the examination of the products, if several isomers differing only in configuration may be formed, or from a study of the reactivity of closely related substances whose molecular shapes are varied in a specific manner. Occasionally a stereochemical fact places a considerable restraint upon the allowable mechanistic postulates, but the most effective employment of stereochemistry generally depends upon its detailed correlation with other experimental methods. [Pg.124]

Since the early times of stereochemistry, the phenomena related to chirality ( dis-symetrie moleculaire, as originally stated by Pasteur) have been treated or referred to as enantiomericaUy pure compounds. For a long time the measurement of specific rotations has been the only tool to evaluate the enantiomer distribution of an enantioimpure sample hence the expressions optical purity and optical antipodes. The usefulness of chiral assistance (natural products, circularly polarized light, etc.) for the preparation of optically active compounds, by either resolution or asymmetric synthesis, has been recognized by Pasteur, Le Bel, and van t Hoff. The first chiral auxiliaries selected for asymmetric synthesis were alkaloids such as quinine or some terpenes. Natural products with several asymmetric centers are usually enantiopure or close to 100% ee. With the necessity to devise new routes to enantiopure compounds, many simple or complex auxiliaries have been prepared from natural products or from resolved materials. Often the authors tried to get the highest enantiomeric excess values possible for the chiral auxiliaries before using them for asymmetric reactions. When a chiral reagent or catalyst could not be prepared enantiomericaUy pure, the enantiomeric excess (ee) of the product was assumed to be a minimum value or was corrected by the ee of the chiral auxiliary. The experimental data measured by polarimetry or spectroscopic methods are conveniently expressed by enantiomeric excess and enantiomeric... [Pg.207]

In principle, bifunctional aldehydes should be able to engage in twofold enzymatic aldol additions to both of their acceptor carbonyls in a fashion to be classified as a tandem reaction, that is, without the need for isolation of intermediates. Depending on the specificity of the enzyme used and on the functionalization in the starting material, the isomeric constitution as well as the absolute and relative stereochemistry should be deliberately addressable. Therefore, we engaged in a program to evaluate the scope and the Hmitations of such two-directional chain elongation processes for the construction of extended poly functional molecules [36]. [Pg.363]

Stereochemistry of the Sn2 reaction A nucleophile donates its electron pairs to the C—X bond on the backside of the leaving group, since the leaving group itself blocks attack from any other direction. Inversion of stereochemistry is observed in the product of an Sn2 reaction. The reaction is stereospecific since a certain stereoisomer reacts to give one specific stereoisomer as product. [Pg.238]

The Diels-Alder reaction is stereo specific. The stereochemistry of the dienophile is retained in the product i.e., cis and trans dienophiles produce different diastereoisomers in the product. For example, freshly distilled cyclopentadiene, having s-cis configuration, reacts with maleic anhydride to give c/ -norbornene-Sjh-endo-dicarboxylic anhydride. [Pg.280]

The phenomenon of isomerism, that is the existence of isomers, may be simply defined as the fact that molecules of identical elemental composition may exist in forms with different chemical or physical properties. Given that identity of chemical composition includes the specification of identical molecular formulae, the most obvious possible cause of differences in properties is a difference between isomers in the relative spatial distribution of their component atoms. Thus, the study of stereochemistry originated from attempts to understand isomerism.2... [Pg.180]


See other pages where Specifications of stereochemistry is mentioned: [Pg.137]    [Pg.118]    [Pg.186]    [Pg.187]    [Pg.189]    [Pg.191]    [Pg.193]    [Pg.195]    [Pg.197]    [Pg.112]    [Pg.137]    [Pg.118]    [Pg.186]    [Pg.187]    [Pg.189]    [Pg.191]    [Pg.193]    [Pg.195]    [Pg.197]    [Pg.112]    [Pg.1047]    [Pg.272]    [Pg.606]    [Pg.1047]    [Pg.179]    [Pg.4]    [Pg.199]    [Pg.326]    [Pg.350]    [Pg.31]    [Pg.260]    [Pg.103]    [Pg.188]    [Pg.1]    [Pg.29]    [Pg.282]    [Pg.190]    [Pg.260]    [Pg.267]    [Pg.1054]    [Pg.127]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



© 2024 chempedia.info