Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents library

For all MicroSYNTH systems, reactions are monitored through an external control terminal utilizing the Easy WAVE software packages. The runs can be controlled by adjusting either the temperature, the pressure, or the microwave power output in a defined program of up to ten steps. The software enables on-line modification of any method parameter and the reaction process is monitored through an appropriate graphical interface. An included solvent library and electronic lab journal feature simplifies the experimental documentation. [Pg.35]

MW irradiation can also accelerate the synthesis of fused 3-aminoimidazoles 37 in a similar reaction to that described above but now in MeOH as solvent. Libraries of 37 were produced by Tye et al. (ten compounds) [73] and Zhang et al. (sixty compounds) [74] via a three-component reaction of heterocyclic amidines with isocyanides and aldehydes using a catalytic amount of Sc(OTf)3 (Scheme 17.27). [Pg.804]

Chemical tests for particular types of impurities, e.g. for peroxides in aliphatic ethers (with acidified KI), or for water in solvents (quantitatively by the Karl Fischer method, see Fieser and Fieser, Reagents for Organic Synthesis J. Wiley Sons, NY, Vol 1 pp. 353, 528, 1967, Library of Congress Catalog Card No 66-27894). [Pg.2]

The previous methods used commercial microwave ovens. When a Smith Synthesizer was employed where one could control temperature and pressure, further improvements in time and yield were noted for the conversion of 95 and 82 into 96. Optimal conditions included the use of aqueous ammonium hydroxide as solvent and nitrogen source. The method was efficient enough to execute on a 4 x 6 array using the dicarbonyl and the aldehyde as points of diversity. The library of 24 compounds was obtained in 39-89% yields and 53-99% purity. [Pg.316]

Solvents and their impurities represent a wide class of compound types therefore, a discussion of common mass spectral features is meaningless. However, most of the mass spectra are listed in computer library search programs and The Eight Peak Index. ... [Pg.308]

This transformation can also be carried out under solvent-free conditions in a domestic oven using acidic alumina and ammoniiun acetate, with or without a primary amine, to give 2,4,5-trisubstituted or 1,2,4,5-tetrasubstituted imidazoles, respectively (Scheme 15A) [69]. The automated microwave-assisted synthesis of a library of 2,4,5-triarylimidazoles from the corresponding keto-oxime has been carried out by irradiation at 200 ° C in acetic acid in the presence of ammonium acetate (Scheme 15B) [70]. Under these conditions, thermally induced in situ N - O reduction occurs upon microwave irradiation, to give a diverse set of trisubstituted imidazoles in moderate yield. Parallel synthesis of a 24-membered library of substituted 4(5)-sulfanyl-lff-imidazoles 40 has been achieved by adding an alkyl bromide and base to the reaction of a 2-oxo-thioacetamide, aldehyde and ammonium acetate (Scheme 15C) [71]. Under microwave-assisted conditions, library generation time was dramatically re-... [Pg.43]

Fewer procedures have been explored recently for the synthesis of simple six-membered heterocycles by microwave-assisted MCRs. Libraries of 3,5,6-trisubstituted 2-pyridones have been prepared by the rapid solution phase three-component condensation of CH-acidic carbonyl compounds 44, NJ -dimethylformamide dimethyl acetal 45 and methylene active nitriles 47 imder microwave irradiation [77]. In this one-pot, two-step process for the synthesis of simple pyridones, initial condensation between 44 and 45 under solvent-free conditions was facilitated in 5 -10 min at either ambient temperature or 100 ° C by microwave irradiation, depending upon the CH-acidic carbonyl compound 44 used, to give enamine intermediate 46 (Scheme 19). Addition of the nitrile 47 and catalytic piperidine, and irradiation at 100 °C for 5 min, gave a library of 2-pyridones 48 in reasonable overall yield and high individual purities. [Pg.46]

The cyclization of 1,2-dicarbonyl compounds with aldehydes in the presence of NH4OAC to give imidazoles was employed in a combinatorial study that compared conventional and microwave heating in the preparation of a library of sulfanyl-imidazoles (Scheme 15). The study employed an array of expandable reaction vessels that could accommodate a pressure build-up system for heating without loss of volatile solvents or reagents. A 24-membered library of imidazoles (48 and 49) was prepared in 16 min instead of the 12 h required using conventional heating [45]. [Pg.223]

The condensation between enaminones and cyanoacetamide is a well-established method for the synthesis of 2-pyridones (see c, Scheme 2, Sect. 2.1), and the use of malonodinitrile instead of the amide component has also been shown to yield 2-pyridones [39-41]. Recently, Gorobets et al. developed a microwave-assisted modification of this reaction suitable for combinatorial synthesis, as they set out to synthesize a small library of compounds containing a 2-pyridone scaffold substituted at the 3, 5, and 6-positions [42]. The 2-pyridones were prepared by a three-component, two-step reaction where eight different carbonyl building blocks were reacted with N,N-dimethylformamide dimethyl acetal (DMFDMA) to yield enaminones 7 (Fig. 2). The reactions were performed under solvent-free conditions at el-... [Pg.314]

Another example for the use of hydrogen as reductant is observed in the reduction of imine [5b]. New imine reductase activity has been discovered in the anaerobic bacterium Acetobacterium woodii by screening a dynamic combinatorial library of virtual imine substrates, using a biphasic water-tetradecane solvent system. [Pg.196]

The spray paint can was inverted and a small amount of product was dispensed into a 20 mL glass headspace vial. The vial was immediately sealed and was incubated at 80°C for approximately 30 min. After this isothermal hold, a 0.5-mL portion of the headspace was injected into the GC/MS system. The GC-MS total ion chromatogram of the paint solvent mixture headspace is shown in Figure 15. Numerous solvent peaks were detected and identified via mass spectral library searching. The retention times, approximate percentages, and tentative identifications are shown in Table 8 for the solvent peaks. These peak identifications are considered tentative, as they are based solely on the library search. The mass spectral library search is often unable to differentiate with a high degree of confidence between positional isomers of branched aliphatic hydrocarbons or cycloaliphatic hydrocarbons. Therefore, the peak identifications in Table 8 may not be correct in all cases as to the exact isomer present (e.g., 1,2,3-cyclohexane versus 1,2,4-cyclohexane). However, the class of compound (cyclic versus branched versus linear aliphatic) and the total number of carbon atoms in the molecule should be correct for the majority of peaks. [Pg.623]


See other pages where Solvents library is mentioned: [Pg.94]    [Pg.178]    [Pg.94]    [Pg.178]    [Pg.131]    [Pg.11]    [Pg.52]    [Pg.458]    [Pg.336]    [Pg.355]    [Pg.129]    [Pg.468]    [Pg.207]    [Pg.34]    [Pg.35]    [Pg.64]    [Pg.93]    [Pg.101]    [Pg.141]    [Pg.166]    [Pg.180]    [Pg.23]    [Pg.155]    [Pg.38]    [Pg.503]    [Pg.77]    [Pg.50]    [Pg.66]    [Pg.202]    [Pg.31]    [Pg.92]    [Pg.269]    [Pg.457]    [Pg.478]    [Pg.512]    [Pg.516]    [Pg.737]    [Pg.170]    [Pg.93]    [Pg.633]    [Pg.61]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Microwave-assisted solvent-free library

Microwave-assisted solvent-free library synthesis

Solvent-free Library Synthesis

© 2024 chempedia.info