Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvation pairs

Here (26) is an intimate ion pair in which the jointly solvated gegen-ions are in very close association with no solvent molecules between them, (27) is a solvent-separated ion pair, and (28) represents the now dissociated, and separately solvated, pair of ions. [Pg.91]

The fundamental origin of all the conformational trends discussed above is the strong reduction of the solvation potential, and hence screening effect, in the core region relative to the corona region. An example of the predicted self-consistent solvation pair potentials is given in Figure 37. [Pg.123]

DIPOLE MOMENT OF COMPONENT I fDEBYES ASSOCIATION OR SOLVATION PARAMETER FOR T E (I.JI PAIR... [Pg.262]

The analysis of recent measurements of the density dependence of has shown, however, that considering only the variation of solvent structure in the vicinity of the atom pair as a fiinction of density is entirely sufficient to understand tire observed changes in with pressure and also with size of the solvent molecules [38]. Assuming that iodine atoms colliding with a solvent molecule of the first solvation shell under an angle a less than (the value of is solvent dependent and has to be found by simulations) are reflected back onto each other in the solvent cage, is given by... [Pg.862]

This chapter focuses on the simulation of bulk liquids. This is a dilferent task from modeling solvation effects, which are discussed in Chapter 24. Solvation effects are changes in the properties of the solute due to the presence of a solvent. They are defined for an individual molecule or pair of molecules. This chapter discusses the modeling of bulk liquids, which implies properties that are not defined for an individual molecule, such as viscosity. [Pg.302]

The reaction medium plays a very important role in all ionic polymerizations. Likewise, the nature of the ionic partner to the active center-called the counterion or gegenion-has a large effect also. This is true because the nature of the counterion, the polarity of the solvent, and the possibility of specific solvent-ion interactions determines the average distance of separation between the ions in solution. It is not difficult to visualize a whole spectrum of possibilities, from completely separated ions to an ion pair of partially solvated ions to an ion pair of unsolvated ions. The distance between the centers of the ions is different in... [Pg.404]

The general formula for the initiator species can be written H B, where the degree of separation or ion pairing depends on the polarity of the medium and the possibility of specific solvation interactions. If we represent the equilibrium constant for the reactions in (6.DD) and (6.EE) by K, the initiator concentration can be written as... [Pg.412]

Ionic polymers may exist as undissociated, unsolvated ion pairs undissociated ion pairs solvated to some extent solvated ions dissociated to some extent or some combination of these. The propagation rate constant kp and the dissociation equilibrium constant K of the lithium salt of anionic... [Pg.420]

The physical picture in concentrated electrolytes is more apdy described by the theory of ionic association (18,19). It was pointed out that as the solutions become more concentrated, the opportunity to form ion pairs held by electrostatic attraction increases (18). This tendency increases for ions with smaller ionic radius and in the lower dielectric constant solvents used for lithium batteries. A significant amount of ion-pairing and triple-ion formation exists in the high concentration electrolytes used in batteries. The ions are solvated, causing solvent molecules to be highly oriented and polarized. In concentrated solutions the ions are close together and the attraction between them increases ion-pairing of the electrolyte. Solvation can tie up a considerable amount of solvent and increase the viscosity of concentrated solutions. [Pg.509]

Figure 1 shows the mechanistic picture developed by C. M. Starks (1,2) for Hquid—Hquid PTC in a graphical form. The catalyst cation extracts the more hpholilic anion Y from the aqueous to the nonpolar organic phase where it is present in the form of a poorly solvated ion pair Y ]. This then reacts rapidly with RX, and the newly formed ion pair X ] returns to the aqueous phase for another exchange process X — Y . In practice most catalyst cations used are rather lipophilic and do not extract strongly into the aqueous phase so that the anions are exchanged at the phase boundary. [Pg.186]

The crown ethers and cryptates are able to complex the alkaU metals very strongly (38). AppHcations of these agents depend on the appreciable solubihty of the chelates in a wide range of solvents and the increase in activity of the co-anion in nonaqueous systems. For example, potassium hydroxide or permanganate can be solubiHzed in benzene [71 -43-2] hy dicyclohexano-[18]-crown-6 [16069-36-6]. In nonpolar solvents the anions are neither extensively solvated nor strongly paired with the complexed cation, and they behave as naked or bare anions with enhanced activity. Small amounts of the macrocycHc compounds can serve as phase-transfer agents, and they may be more effective than tetrabutylammonium ion for the purpose. The cost of these macrocycHc agents limits industrial use. [Pg.393]

The nitrogen lone pair is sterically undemanding, and so usually predominantly occupies an axial site. Solvation can, however, considerably alter this picture. [Pg.9]

It is also of significance that in the dilute gas phase, where the intrinsic orientating properties of pyrrole can be examined without the complication of variable phenomena such as solvation, ion-pairing and catalyst attendant on electrophilic substitution reactions in solution, preferential /3-attack on pyrrole occurs. In gas phase t-butylation, the relative order of reactivity at /3-carbon, a-carbon and nitrogen is 10.3 3.0 1.0 (81CC1177). [Pg.45]

Photoelectron spectroscopic studies show that the first ionization potential (lone pair electrons) for cyclic amines falls in the order aziridine (9.85 eV) > azetidine (9.04) > pyrrolidine (8.77) >piperidine (8.64), reflecting a decrease in lone pair 5-character in the series. This correlates well with the relative vapour phase basicities determined by ion cyclotron resonance, but not with basicity in aqueous solution, where azetidine (p/iTa 11.29) appears more basic than pyrrolidine (11.27) or piperidine (11.22). Clearly, solvation effects influence basicity (74JA288). [Pg.239]

Entry 4 shows that reaction of a secondary 2-octyl system with the moderately good nucleophile acetate ion occurs wifii complete inversion. The results cited in entry 5 serve to illustrate the importance of solvation of ion-pair intermediates in reactions of secondary substrates. The data show fiiat partial racemization occurs in aqueous dioxane but that an added nucleophile (azide ion) results in complete inversion, both in the product resulting from reaction with azide ion and in the alcohol resulting from reaction with water. The alcohol of retained configuration is attributed to an intermediate oxonium ion resulting from reaction of the ion pair with the dioxane solvent. This would react until water to give product of retained configuratioiL When azide ion is present, dioxane does not efiTectively conqiete for tiie ion-p intermediate, and all of the alcohol arises from tiie inversion mechanism. ... [Pg.303]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]


See other pages where Solvation pairs is mentioned: [Pg.246]    [Pg.116]    [Pg.17]    [Pg.684]    [Pg.684]    [Pg.371]    [Pg.616]    [Pg.108]    [Pg.115]    [Pg.122]    [Pg.246]    [Pg.116]    [Pg.17]    [Pg.684]    [Pg.684]    [Pg.371]    [Pg.616]    [Pg.108]    [Pg.115]    [Pg.122]    [Pg.207]    [Pg.2989]    [Pg.162]    [Pg.213]    [Pg.629]    [Pg.702]    [Pg.200]    [Pg.71]    [Pg.164]    [Pg.176]    [Pg.516]    [Pg.111]    [Pg.286]    [Pg.29]    [Pg.33]    [Pg.162]    [Pg.436]    [Pg.438]    [Pg.241]    [Pg.306]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



© 2024 chempedia.info