Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution enthalpies Miedema

Solution enthalpies calculated by Miedema for alloys of transition metals... [Pg.65]

Some aspects of the mentioned relationships have been presented in previous chapters while discussing special characteristics of the alloying behaviour. The reader is especially directed to Chapter 2 for the role played by some factors in the definition of phase equilibria aspects, such as compound formation capability, solid solution formation and their relationships with the Mendeleev Number and Pettifor and Villars maps. Stability and enthalpy of formation of alloys and Miedema s model and parameters have also been briefly commented on. In Chapter 3, mainly dedicated to the structural characteristics of the intermetallic phases, a number of comments have been reported about the effects of different factors, such as geometrical factor, atomic dimension factor, etc. on these characteristics. [Pg.237]

For the calculation of the net adsorption enthalpies of transactinides on metal surfaces the partial molar enthalpies of solution and the enthalpy of displacement are required. These values can be obtained using the semi-empirical Miedema model [66-70] and the Volume-Vacancy or Surface-Vacancy model [32,70,71]. Data for these calculations are given in [34,72,73]. [Pg.231]

Table G. 1 reproduces values calculated by Miedema s model (Niessen et al. 1983) for the partial enthalpy of solution at infinite dilution of a liquid metal solute i in a liquid metal solvent i, AH, (in kJ/mole). For a i-j alloy, the regular solution parameter k can be approximated by [AHj(j( + AHJ(l)]/2. Table G. 1 reproduces values calculated by Miedema s model (Niessen et al. 1983) for the partial enthalpy of solution at infinite dilution of a liquid metal solute i in a liquid metal solvent i, AH, (in kJ/mole). For a i-j alloy, the regular solution parameter k can be approximated by [AHj(j( + AHJ(l)]/2.
The values given by Miedema are the formation enthalpies of solid solutions of A in B or vice versa. The solved metal is embedded into the matrix of the solvent. Using a Haber-Born cycle as shown in Figure 2.39 the sublimation enthalpy of the solved metal embedded in the matrix of the solvent can be calculated. Results of sublimation enthalpies of the solved metal embedded in the matrix of the solvent are shown in Table 2.4b. [Pg.64]


See other pages where Solution enthalpies Miedema is mentioned: [Pg.183]    [Pg.56]    [Pg.97]    [Pg.265]    [Pg.102]    [Pg.53]    [Pg.56]    [Pg.408]    [Pg.325]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Enthalpy solution

Miedema

© 2024 chempedia.info