Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids band structure

Cortona P 1991 Self-consistently determined properties of solids without band structure calculations Phys. Rev. B 44 8454... [Pg.2237]

I be second important practical consideration when calculating the band structure of a malericil is that, in principle, the calculation needs to be performed for all k vectors in the Brillouin zone. This would seem to suggest that for a macroscopic solid an infinite number of ectors k would be needed to generate the band structure. However, in practice a discrete saaipling over the BriUouin zone is used. This is possible because the wavefunctions at points... [Pg.175]

As described in the chapter on band structures, these calculations reproduce the electronic structure of inhnite solids. This is important for a number of types of studies, such as modeling compounds for use in solar cells, in which it is important to know whether the band gap is a direct or indirect gap. Band structure calculations are ideal for modeling an inhnite regular crystal, but not for modeling surface chemistry or defect sites. [Pg.319]

The quantity x is a dimensionless quantity which is conventionally restricted to a range of —-ir < x < tt, a central Brillouin zone. For the case yj = 0 (i.e., S a pure translation), x corresponds to a normalized quasimomentum for a system with one-dimensional translational periodicity (i.e., x s kh, where k is the traditional wavevector from Bloch s theorem in solid-state band-structure theory). In the previous analysis of helical symmetry, with H the lattice vector in the graphene sheet defining the helical symmetry generator, X in the graphene model corresponds similarly to the product x = k-H where k is the two-dimensional quasimomentum vector of graphene. [Pg.40]

Eqn(3) allows a direct determination of LRO-parameter from resistivity measurement by using the constant A as a fit parameter. Eqn(l) is of more complicated character, where besides the SRO-parameters in the different coordination spheres there enter details of the band structure (Y,) which influence sign and magnitude of resistivity variation with degree of SRO. However, restricting to nearest neighbours and using an adequate model for the dependence of a on temperature and concentration, reliable SRO-parameters have been deduced from resistivity measurement for several solid solutions. ... [Pg.220]

D. A. Papaconstantopoulos, Handbook of The Band Structure of Elemental Solids (Plenum, New York, 1986). [Pg.258]

First reported by Fredenhagen in 1926 F3, F4), the graphite-alkali-metal compounds possess a relative simplicity with respect to other intercalation compounds. To the physicist, their uncomplicated structure and well defined stoichiometry permit reasonable band-structure calculations to be made S2,12) to the chemist, their identity as solid, "infinite radical-anions frequently allows their useful chemical substitution for such homogeneous, molecular-basis reductants as alkali metal-amines and aromatic radical anions N2, B5). [Pg.285]

The optical properties of solid Sg have been studied by ab initio MO calculations of the energy band structure [70] but no experimental data for solid Sg are known. [Pg.42]

The SCF method for molecules has been extended into the Crystal Orbital (CO) method for systems with ID- or 3D- translational periodicityiMi). The CO method is in fact the band theory method of solid state theory applied in the spirit of molecular orbital methods. It is used to obtain the band structure as a means to explain the conductivity in these materials, and we have done so in our study of polyacetylene. There are however some difficulties associated with the use of the CO method to describe impurities or defects in polymers. The periodicity assumed in the CO formalism implies that impurities have the same periodicity. Thus the unit cell on which the translational periodicity is applied must be chosen carefully in such a way that the repeating impurities do not interact. In general this requirement implies that the unit cell be very large, a feature which results in extremely demanding computations and thus hinders the use of the CO method for the study of impurities. [Pg.149]

Basically, when analysing the band structures, the equivalent observations apply to typical solid state compounds like thallium halides and lead chalcogenides. In studies on the origin of distortion in a-PbO, it was found that the classical theory of hybridization of the lead 6s and 6p orbitals is incorrect and that the lone pair is the result of the lead-oxygen interaction [44]. It was also noted... [Pg.20]

The description derived above gives useful insight into the general characteristics of the band structure in solids. In reality, band structure is far more complex than suggested by Fig. 6.16, as a result of the inclusion of three dimensions, and due to the presence of many types of orbitals that form bands. The detailed electronic structure determines the physical and chemical properties of the solids, in particular whether a solid is a conductor, semiconductor, or insulator (Fig. 6.17). [Pg.232]

Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(i-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126 13406-13413... [Pg.305]

A list of recent solid-state calculations is given in Refs. [43-45]. We mention only a few of the most recent results discussing relativistic effects. Christensen and Kolar revealed very large relativistic effects in electronic band structure calculations for CsAu... [Pg.217]

The Peierls distortion is not the only possible way to achieve the most stable state for a system. Whether it occurs is a question not only of the band structure itself, but also of the degree of occupation of the bands. For an unoccupied band or for a band occupied only at values around k = 0, it is of no importance how the energy levels are distributed at k = n/a. In a solid, a stabilizing distortion in one direction can cause a destabilization in another direction and may therefore not take place. The stabilizing effect of the Peierls distortion is small for the heavy elements (from the fifth period onward) and can be overcome by other effects. Therefore, undistorted chains and networks are observed mainly among compounds of the heavy elements. [Pg.96]

Figure 14 The left hand side shows the band structures of poly(pyridine) calculated using a DFT-LMTO method for helical polymers. The right hand side shows its calculated density of states spectrum (solid line) and the experimental UPS spectrum (dashed line). The UPS spectrum was taken from Miyamae et al. [104]. Reproduced with permission from Vaschetto et al. [103], Figure 6. Copyright 1997 the American Chemical Society. Figure 14 The left hand side shows the band structures of poly(pyridine) calculated using a DFT-LMTO method for helical polymers. The right hand side shows its calculated density of states spectrum (solid line) and the experimental UPS spectrum (dashed line). The UPS spectrum was taken from Miyamae et al. [104]. Reproduced with permission from Vaschetto et al. [103], Figure 6. Copyright 1997 the American Chemical Society.

See other pages where Solids band structure is mentioned: [Pg.359]    [Pg.93]    [Pg.474]    [Pg.359]    [Pg.93]    [Pg.474]    [Pg.115]    [Pg.163]    [Pg.167]    [Pg.361]    [Pg.218]    [Pg.301]    [Pg.303]    [Pg.63]    [Pg.483]    [Pg.217]    [Pg.279]    [Pg.310]    [Pg.26]    [Pg.63]    [Pg.457]    [Pg.402]    [Pg.404]    [Pg.461]    [Pg.542]    [Pg.538]    [Pg.167]    [Pg.560]    [Pg.122]    [Pg.39]    [Pg.427]    [Pg.216]    [Pg.192]    [Pg.89]    [Pg.218]    [Pg.225]    [Pg.27]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Allowed band structure-solids

Band Structure of Molecular Solids

Band structure

Band structure bands

Band structure in solids

Band structure of representative solids

Band structure, crystalline solids

Band structure, of solids

Banded structures

Electronic band structures of solids

Nonlinear, Band-structure, and Surface Effects in the Interaction of Charged Particles with Solids

The Band Structure of Solids

© 2024 chempedia.info