Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid valence electrons

In the pseiidopotential construction, the atomic wavefrmctions for the valence electrons are taken to be nodeless. The pseiido-wavefrmction is taken to be identical to the appropriate all-electron wavefimction m the regions of interest for solid-state effects. For the core region, the wavefimction is extrapolated back to the... [Pg.110]

Several factors detennine how efficient impurity atoms will be in altering the electronic properties of a semiconductor. For example, the size of the band gap, the shape of the energy bands near the gap and the ability of the valence electrons to screen the impurity atom are all important. The process of adding controlled impurity atoms to semiconductors is called doping. The ability to produce well defined doping levels in semiconductors is one reason for the revolutionary developments in the construction of solid-state electronic devices. [Pg.115]

Whereas the tight-binding approximation works well for certain types of solid, for other s. items it is often more useful to consider the valence electrons as free particles whose motion is modulated by the presence of the lattice. Our starting point here is the Schrodinger equation for a free particle in a one-dimensional, infinitely large box ... [Pg.165]

Valence electron density for the diamond structures of carbon and silicon. (Figure redrawn from Cohen M L i. Predicting New Solids and Superconductors. Science 234 549-553.)... [Pg.178]

It is to be expected that tire conduction data for ceramic oxides would follow the same trends as those found in semiconductors, i.e. the more ionic the metal-oxygen bond, the more the oxides behave like insulators or solid elee-trolytes having a large band gap between the valence electrons and holes, and... [Pg.158]

Valence electrons also can be excited by interacting with the electron beam to produce a collective, longitudinal charge density oscillation called a plasmon. Plas-mons can exist only in solids and liquids, and not in gases because they require electronic states with a strong overlap between atoms. Even insulators can exhibit... [Pg.326]

The fee lattice of the coinage metals has 1 valency electron per atom (d °s ). Admixture with metals further to the right of the periodic table (e.g. Zn) increases the electron concentration in the primary alloy ( -phase) which can be described as an fee solid solution... [Pg.1178]

The low ionization energies of elements at the lower left of the periodic table account for their metallic character. A block of metal consists of a collection of cations of the element surrounded by a sea of valence electrons that the atoms have lost (Fig. 1.53). Only elements with low ionization energies—the members of the s block, the d block, the f block, and the lower left of the p block—can form metallic solids, because only they can lose electrons easily. [Pg.168]

Molecular orbital theory explains the electrical properties of solids by treating them as one huge molecule and supposing that their valence electrons occupy molecular orbitals that spread throughout the solid. [Pg.249]

Metals conduct electricity because their valence electrons move easily from atom to atom. Most covalently bonded solids do not conduct electricity, because their valence electrons are locked into individual bonds and are not free to... [Pg.890]

Solid-state cluster chemistry is dominated by octahedral (M 5L8)L6 and (MsLi2)L units which are the focus of this paper. These two cluster types are different in the way the metal octahedral core is surrounded by the ligands. In (MsLg)L6-type clusters (Fig. 6.1a), typical for molybdenum and rhenium halides, chalcogenides, and chalcohalides, eight innei hgands (L ) cap the octahedron faces and six outer ligands (L ) are located in the apical positions [9]. For metals with a smaller number of valence electrons, the (M6L i2)L -type clusters... [Pg.80]

All these properties of metals are consistent with a bonding description that places the valence electrons in delocalized orbitals. This section describes the band theory of solids, an extension of the delocalized orbital ideas... [Pg.723]

The relatively large band gaps of silicon and germanium limit their usefulness in electrical devices. Fortunately, adding tiny amounts of other elements that have different numbers of valence electrons alters the conductive properties of these solid elements. When a specific impurity is added deliberately to a pure substance, the resulting material is said to be doped. A doped semiconductor has almost the same band stmeture as the pure material, but it has different electron nonulations in its bands. [Pg.728]


See other pages where Solid valence electrons is mentioned: [Pg.358]    [Pg.811]    [Pg.358]    [Pg.811]    [Pg.108]    [Pg.300]    [Pg.2202]    [Pg.59]    [Pg.174]    [Pg.176]    [Pg.23]    [Pg.137]    [Pg.140]    [Pg.140]    [Pg.327]    [Pg.52]    [Pg.57]    [Pg.84]    [Pg.40]    [Pg.133]    [Pg.258]    [Pg.900]    [Pg.1038]    [Pg.1062]    [Pg.1105]    [Pg.1170]    [Pg.179]    [Pg.387]    [Pg.305]    [Pg.365]    [Pg.120]    [Pg.182]    [Pg.250]    [Pg.251]    [Pg.970]    [Pg.272]    [Pg.5]    [Pg.141]    [Pg.158]    [Pg.700]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Valence electron

Valence electrons Valency

© 2024 chempedia.info