Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid schematic representation

FIG. 19-65 Schematic representation of air hubhle-water-solid particle system (a) before, (h) after particle-bubble attachment, and (c) equilibrium force balance. [Pg.1810]

Rgure 3 Experimental and calculated results (a) for epitaxial Cu on Ni (001). The solid lines represent experimental data at the Cu coverage indicated and the dashed lines represent single-scattering cluster calculations assuming a plane wave final state for the Cu IMM Auger electron A schematic representation lb) of the Ni (010) plane with 1-5 monolayers of Cu on top. The arrows indicate directions in which forward scattering events should produce diffraction peaks in (a). [Pg.247]

Fig. 12. Schematic representation of solid-like (crystalline), amorphous solid, and liquid-like surface layers (reproduced from [87], copyright American Chemical Society). Fig. 12. Schematic representation of solid-like (crystalline), amorphous solid, and liquid-like surface layers (reproduced from [87], copyright American Chemical Society).
FIG. 5 Schematic representation of adsorption isotherms in the region of the first-order phase transition on a homogeneous (solid line) and heterogeneous (filled circles) surface. [Pg.263]

Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science. Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science.
Figure 5.2 Schematic representation of the final column-switching system (a) foi ward-flush position (b) back-flush position (further details are given in the text). Reprinted from Journal of Chromatography, A 828, A. K. Sakhi et al. Quantitative determination of endogenous retinoids in mouse embiyos by high-performance liquid cliromatography with on-line solid-phase exti action, column switcliing and electi ochemical detection , pp. 451 -460, copyright 1998, with permission from Elsevier Science. Figure 5.2 Schematic representation of the final column-switching system (a) foi ward-flush position (b) back-flush position (further details are given in the text). Reprinted from Journal of Chromatography, A 828, A. K. Sakhi et al. Quantitative determination of endogenous retinoids in mouse embiyos by high-performance liquid cliromatography with on-line solid-phase exti action, column switcliing and electi ochemical detection , pp. 451 -460, copyright 1998, with permission from Elsevier Science.
A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

Fig. 20. Schematic representation of the solid + solid reaction A + B -> AB in which constituents of the relatively mobile reactant (A) are transported to the outer surfaces of the product phase (AB) and rate is controlled by diffusion of constituents of A and/ or B across the barrier layer AB. Fig. 20. Schematic representation of the solid + solid reaction A + B -> AB in which constituents of the relatively mobile reactant (A) are transported to the outer surfaces of the product phase (AB) and rate is controlled by diffusion of constituents of A and/ or B across the barrier layer AB.
Fig. 22. Schematic representation of the solid phase double decomposition reactions... Fig. 22. Schematic representation of the solid phase double decomposition reactions...
Figure 1.5. Schematic representation of a metal electrode deposited on a 02 -conducting (left) and on a Na -conducting (right) solid electrolyte, showing the location of the metal-electrolyte double layer and of the effective double layer created at the metal/gas interface due to potential-controlled ion migration (backspillover). Figure 1.5. Schematic representation of a metal electrode deposited on a 02 -conducting (left) and on a Na -conducting (right) solid electrolyte, showing the location of the metal-electrolyte double layer and of the effective double layer created at the metal/gas interface due to potential-controlled ion migration (backspillover).
Figure 4.7. Schematic representation of the location of electrocatalytically and catalytically active sites in a section perpendicular to the catalyst film-solid electrolyte interface. Figure 4.7. Schematic representation of the location of electrocatalytically and catalytically active sites in a section perpendicular to the catalyst film-solid electrolyte interface.
We start by considering a schematic representation of a porous metal film deposited on a solid electrolyte, e.g., on Y203-stabilized-Zr02 (Fig. 5.17). The catalyst surface is divided in two distinct parts One part, with a surface area AE is in contact with the electrolyte. The other with a surface area Aq is not in contact with the electrolyte. It constitutes the gas-exposed, i.e., catalytically active film surface area. Catalytic reactions take place on this surface only. In the subsequent discussion we will use the subscripts E (for electrolyte) and G (for gas), respectively, to denote these two distinct parts of the catalyst film surface. Regions E and G are separated by the three-phase-boundaries (tpb) where electrocatalytic reactions take place. Since, as previously discussed, electrocatalytic reactions can also take place to, usually,a minor extent on region E, one may consider the tpb to be part of region E as well. It will become apparent below that the essence of NEMCA is the following One uses electrochemistry (i.e. a slow electrocatalytic reaction) to alter the electronic properties of the metal-solid electrolyte interface E. [Pg.206]

Figure 5.17. Schematic representation of a metal crystallite deposited on YSZ and of the changes induced in its electronic properties upon polarizing the catalyst-solid electrolyte interface and changing the Fermi level (or electrochemical potential of electrons) from an initial value p to a new value p -eri30 31 Reprinted with permission from Elsevier Science. Figure 5.17. Schematic representation of a metal crystallite deposited on YSZ and of the changes induced in its electronic properties upon polarizing the catalyst-solid electrolyte interface and changing the Fermi level (or electrochemical potential of electrons) from an initial value p to a new value p -eri30 31 Reprinted with permission from Elsevier Science.
Fig. 4. Schematic representation of the smectic layering along with their characteristic diffraction patterns for the monolayer (Ai), the partially bilayer (Aj), the bilayer (A2) and the two-dimensional (A) phases. The arrows indicate permanent dipoles, the solid points are Bragg reflections... Fig. 4. Schematic representation of the smectic layering along with their characteristic diffraction patterns for the monolayer (Ai), the partially bilayer (Aj), the bilayer (A2) and the two-dimensional (A) phases. The arrows indicate permanent dipoles, the solid points are Bragg reflections...
Fig. 28—Schematic representation of two extreme polymer conformations at the surface of the solid at low surface coverage S is the cross-sectional diameter of the polymer chain, and R is the radius of gyration of the molecule in the bulk [42]. Fig. 28—Schematic representation of two extreme polymer conformations at the surface of the solid at low surface coverage S is the cross-sectional diameter of the polymer chain, and R is the radius of gyration of the molecule in the bulk [42].
Figure 3.2. Schematic representation of some of the effects on the calibration curve observed during validation. The dotted line represents the reference method or laboratory, the solid line is the test method or new laboratory. Figure 3.2. Schematic representation of some of the effects on the calibration curve observed during validation. The dotted line represents the reference method or laboratory, the solid line is the test method or new laboratory.
Figure 3.8 Schematic representation of solid grinding (SC) method. Figure 3.8 Schematic representation of solid grinding (SC) method.
Schematic representation of disturbed triple-line region on a soft solid. Schematic representation of disturbed triple-line region on a soft solid.
Fig. 14.—Schematic Representation of the Fragmentation Observed in the Positive F.a.b.-Mass Spectrum of a Permethylated Ganglioside Isolated from Granulocytes. [Other glyco-sphingolipids fragment in a similar way. Major cleavages are shown with solid lines, and minor cleavages with dotted lines. The masses of ions resulting from cleavages (a), (b), and (c) define the type of sphingosine and the type of fatty acid. In this example, (a) is 548, (b) is [M + H] minus 238, and (c) is [M + H] minus 533.]... Fig. 14.—Schematic Representation of the Fragmentation Observed in the Positive F.a.b.-Mass Spectrum of a Permethylated Ganglioside Isolated from Granulocytes. [Other glyco-sphingolipids fragment in a similar way. Major cleavages are shown with solid lines, and minor cleavages with dotted lines. The masses of ions resulting from cleavages (a), (b), and (c) define the type of sphingosine and the type of fatty acid. In this example, (a) is 548, (b) is [M + H] minus 238, and (c) is [M + H] minus 533.]...
Figure 7, Schematic representation of the 1-TS (solid) and 2-TS (dashed) (where TS = transition state) reaction paths in the reaction Ha + HbHc Ha He + Hb- The H3 potential energy surface is represented using the hyperspherical coordinate system of Kuppermann [54], in which the equilateral-triangle geometry of the Cl is in the center (x), and the linear transition states ( ) are on the perimeter of the circle the hyperradius p = 3.9 a.u. The angle is the internal angular coordinate that describes motion around the CL... Figure 7, Schematic representation of the 1-TS (solid) and 2-TS (dashed) (where TS = transition state) reaction paths in the reaction Ha + HbHc Ha He + Hb- The H3 potential energy surface is represented using the hyperspherical coordinate system of Kuppermann [54], in which the equilateral-triangle geometry of the Cl is in the center (x), and the linear transition states ( ) are on the perimeter of the circle the hyperradius p = 3.9 a.u. The angle is the internal angular coordinate that describes motion around the CL...
Point defects in solids make it possible for ions to move through the structure. Ionic conductivity represents ion transport under the influence of an external electric field. The movement of ions through a lattice can be explained by two possible mechanisms. Figure 25.3 shows their schematic representation. The first, called the vacancy mechanism, represents an ion that hops or jumps from its normal position on the lattice to a neighboring equivalent but vacant site or the movement of a vacancy in the opposite direction. The second one is an interstitial mechanism where an interstitial ion jumps or hops to an adjacent equivalent site. These simple pictures of movement in an ionic lattice, known as the hopping model, ignore more complicated cooperative motions. [Pg.426]

Fig. 4.1. Schematic representation of three numbered steps in a MC simulation on a high coordination lattice (solid arrows) that replace a simulation of the fully atomistic system in continuous space (single dashed line)... Fig. 4.1. Schematic representation of three numbered steps in a MC simulation on a high coordination lattice (solid arrows) that replace a simulation of the fully atomistic system in continuous space (single dashed line)...
Fig. 4 Schematic representation of long-distance radical cation migration in DNA. In AQ-DNA(l), irradiation of the anthraquinone group linked at the 5 -terminus leads to reaction at GG steps that are 27 A and 44 A from the site of charge injection. The amount of reaction observed at each guanine is represented approximately by the length of the solid arrow. In UAQ-DNA(2), irradiation of the anthraquinone leads to reaction at each of the eight GG steps. However, replacement of a G by 7,8-dihydro-8-oxoguanine (8-OxoG) introduces a deep trap that inhibits reaction at guanines on the same side of the DNA as the trap... Fig. 4 Schematic representation of long-distance radical cation migration in DNA. In AQ-DNA(l), irradiation of the anthraquinone group linked at the 5 -terminus leads to reaction at GG steps that are 27 A and 44 A from the site of charge injection. The amount of reaction observed at each guanine is represented approximately by the length of the solid arrow. In UAQ-DNA(2), irradiation of the anthraquinone leads to reaction at each of the eight GG steps. However, replacement of a G by 7,8-dihydro-8-oxoguanine (8-OxoG) introduces a deep trap that inhibits reaction at guanines on the same side of the DNA as the trap...
Figure 24. Schematic representation of the effect of anion adsorption on the potential profile at the O/S interface, showing the potential profile before (dashed line) and after adsorption (solid line). Figure 24. Schematic representation of the effect of anion adsorption on the potential profile at the O/S interface, showing the potential profile before (dashed line) and after adsorption (solid line).
Because of the inadequacies of the aforementioned models, a number of papers in the 1950s and 1960s developed alternative mathematical descriptions of fluidized beds that explicitly divided the reactor contents into two phases, a bubble phase and an emulsion or dense phase. The bubble or lean phase is presumed to be essentially free of solids so that little, if any, reaction occurs in this portion of the bed. Reaction takes place within the dense phase, where virtually all of the solid catalyst particles are found. This phase may also be referred to as a particulate phase, an interstitial phase, or an emulsion phase by various authors. Figure 12.19 is a schematic representation of two phase models of fluidized beds. Some models also define a cloud phase as the region of space surrounding the bubble that acts as a source and a sink for gas exchange with the bubble. [Pg.522]

Figure 1 Schematic representation of the 13C (or 15N) spin-lattice relaxation times (7"i), spin-spin relaxation (T2), and H spin-lattice relaxation time in the rotating frame (Tlp) for the liquid-like and solid-like domains, as a function of the correlation times of local motions. 13C (or 15N) NMR signals from the solid-like domains undergoing incoherent fluctuation motions with the correlation times of 10 4-10 5 s (indicated by the grey colour) could be lost due to failure of attempted peak-narrowing due to interference of frequency with proton decoupling or magic angle spinning. Figure 1 Schematic representation of the 13C (or 15N) spin-lattice relaxation times (7"i), spin-spin relaxation (T2), and H spin-lattice relaxation time in the rotating frame (Tlp) for the liquid-like and solid-like domains, as a function of the correlation times of local motions. 13C (or 15N) NMR signals from the solid-like domains undergoing incoherent fluctuation motions with the correlation times of 10 4-10 5 s (indicated by the grey colour) could be lost due to failure of attempted peak-narrowing due to interference of frequency with proton decoupling or magic angle spinning.
Figure 17 Schematic representation of heterogeneous portions of curdlan hydrogel (left) (A) liquid-like portion, (B) portion of intermediate mobility, and (C) triple-helical cross-links in the solid-like portion and crystallites as additional cross-links, and branched glucans (triple helical chains) (right). From Ref. 117 with permission. Figure 17 Schematic representation of heterogeneous portions of curdlan hydrogel (left) (A) liquid-like portion, (B) portion of intermediate mobility, and (C) triple-helical cross-links in the solid-like portion and crystallites as additional cross-links, and branched glucans (triple helical chains) (right). From Ref. 117 with permission.
Figure 45 Schematic representation of molecular orbitals (a) macrocrystalline solid (b) nanocrystalline... Figure 45 Schematic representation of molecular orbitals (a) macrocrystalline solid (b) nanocrystalline...
Figure 1. Typical structure of the porous electrode with solid reagents and schematic representation of the proposed physical model. [Pg.464]

Fig. 7 Schematic representation of moisture transfer between solid components A and B with (a) headspaces isolated from one another and (b) headspaces allowed to equilibrate. Ra and Rb = initial relative humidities above A and B VA and VB = headspace volumes above A and B Rf and VT = final relative humidity and headspace volume above A and B. (From Ref. 95.)... Fig. 7 Schematic representation of moisture transfer between solid components A and B with (a) headspaces isolated from one another and (b) headspaces allowed to equilibrate. Ra and Rb = initial relative humidities above A and B VA and VB = headspace volumes above A and B Rf and VT = final relative humidity and headspace volume above A and B. (From Ref. 95.)...

See other pages where Solid schematic representation is mentioned: [Pg.312]    [Pg.116]    [Pg.290]    [Pg.415]    [Pg.408]    [Pg.242]    [Pg.119]    [Pg.164]    [Pg.721]    [Pg.78]    [Pg.221]    [Pg.391]    [Pg.204]    [Pg.319]    [Pg.147]    [Pg.363]    [Pg.352]   
See also in sourсe #XX -- [ Pg.262 ]

See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Schematic representation

© 2024 chempedia.info