Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sohds change

Sublimation is a process whereby a sohd changes directly to a gas. [Pg.338]

Apply the test to compounds which contain chlorine or bromine. If the compound is a solid, dissolve 0 1 g. in the minimum volume of pure, dry acetone. To 1 ml. of the sodium iodide acetone reagent add 2 drops of the compound (if a hquid) or the acetone solution (if a sohd). Shake and allow to stand at room temperature for 3 minutes. Note whether a precipitate is formed and also whether the solution acquires a reddish-brown colour (liberation of iodine). If no change takes place at rocrm temperature, place the test-tube in a beaker of water at 50°. After 5 minutes, cool to room temperature, and observe whether a reaction has occurred. [Pg.1060]

Results obtained for two mixed plastics are summarized in Table 4. A balance exists between process temperature, plastics feed rate, and product yields (67). For example, lower temperatures increase wax formation due to incomplete depolymerization. Slower feed rates and increased residence times reduce wax formation and increase the yield of Hquids. The data summarized in Table 4 illustrate that the addition of PET to a HDPE PP PS mixture changes the performance of the Conrad process. Compared to the reference HDPE PP PS mixture, increased amounts of soHds ate formed. These are 95% terephthahc acid and 5% mono- and bis-hydroxyethyl esters. At higher temperatures, apparentiy enough water remains to promote decarboxylation. [Pg.232]

The highly conductive class of soHds based on TTF—TCNQ have less than complete charge transfer (- 0.6 electrons/unit for TTF—TCNQ) and display metallic behavior above a certain temperature. However, these soHds undergo a metal-to-insulator transition and behave as organic semiconductors at lower temperatures. The change from a metallic to semiconducting state in these chain-like one-dimensional (ID) systems is a result of a Peieds instabihty. Although for tme one-dimensional systems this transition should take place at 0 Kelvin, interchain interactions lead to effective non-ID behavior and inhibit the onset of the transition (6). [Pg.239]

Reaction 1 is highly exothermic. The heat of reaction at 25°C and 101.3 kPa (1 atm) is ia the range of 159 kj/mol (38 kcal/mol) of soHd carbamate (9). The excess heat must be removed from the reaction. The rate and the equilibrium of reaction 1 depend gready upon pressure and temperature, because large volume changes take place. This reaction may only occur at a pressure that is below the pressure of ammonium carbamate at which dissociation begias or, conversely, the operating pressure of the reactor must be maintained above the vapor pressure of ammonium carbamate. Reaction 2 is endothermic by ca 31.4 kJ / mol (7.5 kcal/mol) of urea formed. It takes place mainly ia the Hquid phase the rate ia the soHd phase is much slower with minor variations ia volume. [Pg.299]

The slurry is pumped iato another stock chest, where wax ia emulsion form, usually about 0.5—1.0% wax-to-fiber weight, and 1—3% PF resia are added. PF resia is also added on the basis of resia soHds-to-dry fiber. Thea a small amouat of alum is added, which changes the pH (acidity) of the slurry, causiag the resia to precipitate from solutioa and deposit on the fibers. Resia is required ia greater quantity than ia the Masonite process because only light bonding occurs between fibers prepared ia a refiner. The fiber slurry is thea pumped to the headbox of a Fourdrioier mat former, and from this poiat the process is similar to the Masonite process. [Pg.388]

Several recent patents describe improvements in the basic belt process. In one case a higher soHds polymerization is achieved by cooling the starting monomer until some monomer crystallizes and then introducing the resulting monomer slurry onto the belt as above. The latent heat of fusion of the monomer crystals absorbs some of the heat of polymerization, which otherwise limits the soHds content of the polymerization (87). In another patent a concave belt is described which becomes flat near the end. This change leads to improved release of polymer (88). [Pg.142]

Fig. 4. Selection of fan size where the soHd line represents a typical setting and the dashed lines the operating extremes, (a) Desirable sizing. The system resistance curve intersects the fan curve near its maximum efficiency. Changes in system resistance from a flow-control element also intersect the fan curve at desirable points for good flow control. The dashed curves also intersect system resistance curves at desirable locations, (b) A fan essentially too large for the system. The intersection of the system curve near the peak of the fan curve results in poor system flow control and perhaps surging. Fig. 4. Selection of fan size where the soHd line represents a typical setting and the dashed lines the operating extremes, (a) Desirable sizing. The system resistance curve intersects the fan curve near its maximum efficiency. Changes in system resistance from a flow-control element also intersect the fan curve at desirable points for good flow control. The dashed curves also intersect system resistance curves at desirable locations, (b) A fan essentially too large for the system. The intersection of the system curve near the peak of the fan curve results in poor system flow control and perhaps surging.
Perovskite-type compounds, especially BaTiO, have the abiUty to form extensive soHd solutions. By this means a wide variety of materials having continuously changing electrical properties can be produced ia the polycrystaUine ceramic state. By substituting ions for ions, T can be... [Pg.204]

The specific cake resistance is the most troublesome parameter ideally constant, its value is needed to calculate the resistance to flow when the amount of cake deposited on the filter is known. In practice, it depends on the approach velocity of the suspension, the degree of flow consoHdation that the cake undergoes with time, the feed soHds concentration, and, most importantly, the appHed pressure drop Ap. This changes due to the compressibiHty of most cakes in practice. often decreases with the velocity and the feed concentration. It may sometimes go through a maximum when it is plotted against soHds concentration. The strongest effect on is due to pressure, conventionally expressed as ... [Pg.392]


See other pages where Sohds change is mentioned: [Pg.397]    [Pg.203]    [Pg.384]    [Pg.906]    [Pg.852]    [Pg.339]    [Pg.269]    [Pg.397]    [Pg.203]    [Pg.384]    [Pg.906]    [Pg.852]    [Pg.339]    [Pg.269]    [Pg.25]    [Pg.747]    [Pg.943]    [Pg.1143]    [Pg.175]    [Pg.250]    [Pg.252]    [Pg.255]    [Pg.286]    [Pg.298]    [Pg.396]    [Pg.419]    [Pg.442]    [Pg.443]    [Pg.3]    [Pg.135]    [Pg.169]    [Pg.206]    [Pg.229]    [Pg.251]    [Pg.318]    [Pg.389]    [Pg.410]    [Pg.491]    [Pg.17]    [Pg.41]    [Pg.87]    [Pg.90]    [Pg.91]    [Pg.204]    [Pg.206]    [Pg.253]    [Pg.413]    [Pg.452]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Sohd-liquid phase change materials

Sohds

© 2024 chempedia.info