Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium aldehyde reduction with

SchifT s bases A -Arylimides, Ar-N = CR2, prepared by reaction of aromatic amines with aliphatic or aromatic aldehydes and ketones. They are crystalline, weakly basic compounds which give hydrochlorides in non-aqueous solvents. With dilute aqueous acids the parent amine and carbonyl compounds are regenerated. Reduction with sodium and alcohol gives... [Pg.353]

Sodium borohydride and lithium aluminum hydride react with carbonyl compounds in much the same way that Grignard reagents do except that they function as hydride donors rather than as carbanion sources Figure 15 2 outlines the general mechanism for the sodium borohydride reduction of an aldehyde or ketone (R2C=0) Two points are especially important about this process... [Pg.629]

Analogously, aldehydes react with ammonia [7664-41-7] or primary amines to form Schiff bases. Subsequent reduction produces a new amine. The addition of hydrogen cyanide [74-90-8] sodium bisulfite [7631-90-5] amines, alcohols, or thiols to the carbonyl group usually requires the presence of a catalyst to assist in reaching the desired equilibrium product. [Pg.471]

Higher nitroalkanes are prepared from lower primary nitroalkanes by a one-pot synthesis (69). Successive condensations with aldehydes and acylating agents are followed by reduction with sodium borohydride. Overall conversions in the 75—80% range are reported. [Pg.101]

Reduction to alcohols (Section 15.2) Aldehydes are reduced to primary alcohols, and ketones are reduced to secondary alcohols by a variety of reducing agents. Catalytic hydrogenation over a metal catalyst and reduction with sodium borohydride or lithium aluminum hydride are general methods. [Pg.713]

Further reduction of 3,4-dihydroquinazoline to l,2,3,Jt-tetTahydro-quinazoline is more difficult, but it can be accomplished with sodium amalgam or by catalytic reduction with palladium-charcoal. 1,2,3,4-Tetrahydroquinazolines have also been prepared by condensing o-aminobenzylamines with various aldehydes and with formaldehyde or methylenediamines (see 3b). [Pg.286]

Conjugate addition of methyl magnesium iodide in the presence of cuprous chloride to the enone (91) leads to the la-methyl product mesterolone (92) Although this is the thermodynamically unfavored axially disposed product, no possibility for isomerization exists in this case, since the ketone is once removed from this center. In an interesting synthesis of an oxa steroid, the enone (91) is first oxidized with lead tetraacetate the carbon at the 2 position is lost, affording the acid aldehyde. Reduction of this intermediate, also shown in the lactol form, with sodium borohydride affords the steroid lactone oxandrolone... [Pg.174]

In this section primarily reductions of aldehydes, ketones, and esters with sodium, lithium, and potassium in the presence of TCS 14 are discussed closely related reductions with metals such as Zn, Mg, Mn, Sm, Ti, etc., in the presence of TCS 14 are described in Section 13.2. Treatment of ethyl isobutyrate with sodium in the presence of TCS 14 in toluene affords the O-silylated Riihlmann-acyloin-condensation product 1915, which can be readily desilylated to the free acyloin 1916 [119]. Further reactions of methyl or ethyl 1,2- or 1,4-dicarboxylates are discussed elsewhere [120-122]. The same reaction with trimethylsilyl isobutyrate affords the C,0-silylated alcohol 1917, in 72% yield, which is desilylated to 1918 [123] (Scheme 12.34). Likewise, reduction of the diesters 1919 affords the cyclized O-silylated acyloin products 1920 in high yields, which give on saponification the acyloins 1921 [119]. Whereas electroreduction on a Mg-electrode in the presence of MesSiCl 14 converts esters such as ethyl cyclohexane-carboxylate via 1922 and subsequent saponification into acyloins such as 1923 [124], electroreduction of esters such as ethyl cyclohexylcarboxylate using a Mg-electrode without Me3SiCl 14 yields 1,2-ketones such as 1924 [125] (Scheme 12.34). [Pg.281]

The reaction of the aldehyde 174, prepared from D-glucose diethyl dithio-acetal by way of compounds 172 and 173, with lithium dimethyl methyl-phosphonate gave the adduct 175. Conversion of 175 into compound 176, followed by oxidation with dimethyl sulfoxide-oxalyl chloride, provided diketone 177. Cyclization of 177 with ethyldiisopropylamine gave the enone 178, which furnished compounds 179 and 180 on sodium borohydride reduction. 0-Desilylation, catalytic hydrogenation, 0-debenzyIation, and acetylation converted 179 into the pentaacetate 93 and 5a-carba-a-L-ido-pyranose pentaacetate (181). [Pg.48]

Nitromethylation of aldehydes has been carried out in a one pot procedure consisting of the Henry reaction, acetylation, and reduction with sodium borohydride, which provides a good method for the preparation of l-nitroalkanes.16b 79 It has been improved by several modifications. The initial condensation reaction is accelerated by use of KF and 18-crown-6 in isopropanol. Acetylation is effected with acetic anhydride at 25 °C and 4-dimethylaminopyridine (DMAP) as a catalyst. These mild conditions are compatible with various functional groups which are often... [Pg.44]

Another route to the formation of a hydrazide on a surface is to use an aldehyde-containing particle (such as HEMA/acrolein copolymers) and subsequently modify the aldehydes to form hydrazone linkages with bis-hydrazide compounds, which then can be stabilized by reduction with sodium cyanoborohydride (Chapter 2, Section 5). The resulting derivative contains terminal hydrazides for immobilization of carbonyl ligands (see Figure 14.18). [Pg.613]

Figure 14.21 Aldehyde-particles can be reacted with amine-containing proteins or other molecules to form intermediate Schiff bases, which can be stabilized by reduction with sodium cyanoborohydride. Figure 14.21 Aldehyde-particles can be reacted with amine-containing proteins or other molecules to form intermediate Schiff bases, which can be stabilized by reduction with sodium cyanoborohydride.
The Vilsmeier-Haack reaction of 2,6-dimethylimidazo[2,T. ][l,3,4]thiadiazole 169 gives aldehyde 170, which after reduction with sodium borohydride affords 2,6-dimethyl-5-hydroxymethylimidazo[2,TA [l,3,4]thiadiazole 171 (Scheme 2) <2000AF550, 2006BMC3069, 2006TL2811>. [Pg.231]

Phosphorylated allenes 195 (R1 = H or Me) are a source of secondary ( )-allylamines. The allenes are treated with an amine R2NH2 (R2 = t-Bu or 4-MeCgH4 and the products, which exist as equilibrium mixtures of enamines 196 and imines 197, are olefinated by successive reaction with methyllithium and an aldehyde R3CHO (R = i-Bu, 4-MeCgH4, PhCH2CH2 etc). Reduction with sodium borohydride finally yields the... [Pg.572]

A method for the conversion of unsaturated aliphatic aldehydes to saturated aldehydes is a gentle catalytic hydrogenation. Palladium is more selective than nickel. Hydrogenation over sodium borohydride-reduced palladium in methanol at room temperature and 2 atm reduced crotonaldehyde to butyralde-hyde but did not hydrogenate butyraldehyde [57]. Nickel prepared by reduction with sodium borohydride was less selective it effected reduction of crotonaldehyde to butyraldehyde but also reduction of butyraldehyde to butyl alcohol, though at a slower rate [57]. Hydrogenation of 2,2,dimethyl-... [Pg.97]

Complex hydrides can be used for the selective reduction of the carbonyl group although some of them, especially lithium aluminum hydride, may reduce the a, -conjugated double bond as well. Crotonaldehyde was converted to crotyl alcohol by reduction with lithium aluminum hydride [55], magnesium aluminum hydride [577], lithium borohydride [750], sodium boro-hydride [751], sodium trimethoxyborohydride [99], diphenylstarmane [114] and 9-borabicyclo[3,3,l]nonane [764]. A dependable way to convert a, -un-saturated aldehydes to unsaturated alcohols is the Meerwein-Ponndorf reduction [765]. [Pg.98]

Reduction of the double bond only was achieved by catalytic hydrogenation over palladium prepared by reduction with sodium borohydride. This catalyst does not catalyze hydrogenation of the aldehyde group [31]. Also sodium borohydride-reduced nickel was used for conversion of cinnamaldehyde to hydrocinnamaldehyde [31]. Homogeneous hydrogenation over tris(triphenylphosphine)rhodium chloride gave 60% of hydrocinnamaldehyde and 40% of ethylbenzene [5(5]. Raney nickel, by contrast, catalyzes total reduction to hydrocinnamyl alcohol [4S. Total reduction of both the double... [Pg.101]


See other pages where Sodium aldehyde reduction with is mentioned: [Pg.265]    [Pg.380]    [Pg.439]    [Pg.84]    [Pg.318]    [Pg.92]    [Pg.111]    [Pg.387]    [Pg.699]    [Pg.1031]    [Pg.112]    [Pg.114]    [Pg.220]    [Pg.277]    [Pg.251]    [Pg.7]    [Pg.137]    [Pg.387]    [Pg.525]    [Pg.228]    [Pg.65]    [Pg.218]    [Pg.442]    [Pg.241]    [Pg.49]    [Pg.96]    [Pg.110]    [Pg.137]   
See also in sourсe #XX -- [ Pg.372 , Pg.375 ]




SEARCH



Aldehydes reduction

Aldehydes reductive

Reduction with sodium

Sodium, reduction

© 2024 chempedia.info