Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitutions SN1 reaction

In Chapter 4, Sn2 reactions were defined and presented in the context of the various conditions necessary for such reactions to take place. However, as mentioned in the introductory comments of Chapter 4, there are additional fundamental mechanistic types relevant to organic chemistry that are essential to understand in order to advance in this subject. In this chapter, discussions of organic chemistry reaction mechanisms are advanced to the study of SN1 reactions. While conditions required for SN1 reactions to proceed are quite different from those essential for SN2 reactions, the products of SN1 reactions, in many cases, resemble those derived from SN2 mechanisms. Additionally, unlike SN2 reactions, SN1 reaction mechanisms allow routes for unwanted or, in some planned cases, preferred side reactions. [Pg.83]

Arrow Pushing in Organic Chemistry An Easy Approach to Understanding Reaction Mechanisms. By Daniel E. Levy [Pg.83]

Because, with SN1 reactions, a reactive carbocation is formed before incorporation of a nucleophile, other products may form in addition to the simple substituted materials anticipated. These additional products arise from the specific properties of carbocations. The properties of carbocations and their related mechanistic outcomes are presented in the following sections. [Pg.84]

In order for an SnI reaction to proceed, initial formation of a carbocation is required. A primary method for the formation of carbocations occurs during solvolysis reactions. [Pg.84]


The work cited in sections 2.4 and 2.5 is representative of the SN1 substitution reactions of metal carbonyls. However, a much more extensive and detailed account has recently been published covering similar reactions of vanadium, chromium, molybdenum, tungsten, rhenium, iron and nickel carbonyls in addition to those of manganese and cobalt2 9a. [Pg.208]

Strong acids promote SN1 substitution reactions by converting an electron-rich ( basic ) atom on the substrate into a good leaving group, e.g., for substitution reactions of tert-butyl derivatives. [Pg.55]

Note that the first two steps of the propagation part look a lot like the SN1 substitution reaction (Chapter 3)—a leaving group leaves, then the nucleophile comes in—except that an aryl radical is formed as a transient intermediate instead of a carbocation. [Pg.76]

Predict whether each of the following substitution reactions is likely to be SN1 or S 2 ... [Pg.380]

Sn2 reactions take place with inversion of configuration, and SN1 reaction take place with racemization. The following substitution reaction, howeve occurs with complete retention of configuration. Propose a mechanism. [Pg.407]

How- does this reaction take place Although it appears superficially similar to the SN1 and S 2 nucleophilic substitution reactions of alkyl halides discussed in Chapter 11, it must be different because aryl halides are inert to both SN1 and Sj 2 conditions. S l reactions don t occur wdth aryl halides because dissociation of the halide is energetically unfavorable due to tire instability of the potential aryl cation product. S]sj2 reactions don t occur with aryl halides because the halo-substituted carbon of the aromatic ring is sterically shielded from backside approach. For a nucleophile to react with an aryl halide, it would have to approach directly through the aromatic ring and invert the stereochemistry of the aromatic ring carbon—a geometric impossibility. [Pg.572]

Alcohols react with p-toluenesulfonyl chloride (tosyJ chloride, p-TosCl) in pyridine solution to yield alkyl tosylates, ROTos (Section 11.1). Only the 0-H bond of the alcohol is broken in this reaction the C—O bond remains intact, so no change of configuration occurs if the oxygen is attached to a chirality center. The resultant alkyl tosylates behave much like alkyl halides, undergoing both SN1 and Sjsj2 substitution reactions. [Pg.618]

Acidic ether cleavages are typical nucleophilic substitution reactions, either SN1 or Sn2 depending on the structure of the substrate. Ethers with only primary and secondary alkyl groups react by an S 2 mechanism, in which or Br attacks the protonated ether at the less hindered site. This usually results in a selective cleavage into a single alcohol and a single alkyl halide. For example, ethyl isopropyl ether yields exclusively isopropyl alcohol and iodoethane on cleavage by HI because nucleophilic attack by iodide ion occurs at the less hindered primary site rather than at the more hindered secondary site. [Pg.658]

The effects predicted are qualitative at best. There are other factors that must be taken into account when predicting how various characteristics of the metal and ligand affect substitution reactions. For example, increasing the size of the metal ion is predicted to assist the formation of the transition state in SN1,... [Pg.707]

Let us first consider the case of a substitution reaction in a complex of a d6 ion such as Co3+ in a strong field. If the process takes place by an SN1 process, the five-bonded transition state may be presumed to have either a trigonal bipyramid or square-based pyramid structure. The orbital energies will be determined as follows ... [Pg.708]

Inmost instances, a haloorganic subject to either SN2 displacement reaction or SN1 substitution is heated at reflux with the trivalent phosphorus ester with the concomitant formation of the valence-expanded organophosphorus compound and haloorganic by-product, as illustrated with an example in Equation 3.1. [Pg.42]

FIGURE 2.10 Differentiation of SN1 (substitution nucleophilic unimolecular, first order) and SN2 (substitution nucleophilic bimolecular, second order) reactions. [Pg.17]

Many theories have been put forward to explain the mechanism of inversion. According to the accepted Hugles, Ingold theory aliphatic nucleophilic substitution reactions occur eigher by SN2 or SN1 mechanism. In the SN2 mechanism the backside attack reduces electrostatic repulsion in the transition state to a minimum when the leaving meleophile leaves the asymmetric carbon, naturally an inversion of configuration occurs at the central carbon atom. [Pg.156]

The reaction mechanism and hence the reaction co-ordinate will, themselves, be governed by the nature of the configurations from which the profile is built up. Thus, for example, for the set of nucleophilic substitution reactions a large contribution of the carbocation configuration will endow the entire reaction co-ordinate with SN1 character. [Pg.138]

Let us now look at some examples to illustrate what we have discussed so far to get a feeling of how structural moieties influence the mechanisms, and to see some rates of nucleophilic substitution reactions of halogenated hydrocarbons in the environment. Table 13.6 summarizes the (neutral) hydrolysis half-lives of various mono-halogenated compounds at 25°C. We can see that, as anticipated, for a given type of compound, the carbon-bromine and carbon-iodine bonds hydrolyze fastest, about 1-2 orders of magnitude faster than the carbon-chlorine bond. Furthermore, we note that for the compounds of interest to us, SN1 or SN2 hydrolysis of carbon-fluorine bonds is likely to be too slow to be of great environmental significance. [Pg.504]

We note that in Eq. 13-11 we have introduced the El (elimination, unimolecular) reaction, which commonly competes with the SN1 reaction provided that an adjacent carbon atom carries one or several hydrogen atoms that may dissociate. We also note that similar to what we have stated earlier for nucleophilic substitution reactions, elimination reactions may occur by mechanisms between the E2 and El extremes. [Pg.511]

Platinum(IV) is kinetically inert, but substitution reactions are observed. Deceptively simple substitution reactions such as that in equation (554) do not proceed by a simple SN1 or 5 2 process. In almost all cases the reaction mechanism involves redox steps. The platinum(II)-catalyzed substitution of platinum(IV) is the common kind of redox reaction which leads to formal nucleophilic substitution of platinum(IV) complexes. In such cases substitution results from an atom-transfer redox reaction between the platinum(IV) complex and a five-coordinate adduct of the platinum(II) compound (Scheme 22). The platinum(II) complex can be added to the solution, or it may be present as an impurity, possibly being formed by a reductive elimination step. These reactions show characteristic third-order kinetics, first order each in the platinum(IV) complex, the entering ligand Y, and the platinum(II) complex. The pathway is catalytic in PtnL4, but a consequence of such a mechanism is the transfer of platinum between the catalyst and the substrate. 10 This premise has been verified using a 195Pt tracer.2011... [Pg.497]


See other pages where Substitutions SN1 reaction is mentioned: [Pg.83]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.94]    [Pg.96]    [Pg.98]    [Pg.100]    [Pg.322]    [Pg.282]    [Pg.83]    [Pg.84]    [Pg.86]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.94]    [Pg.96]    [Pg.98]    [Pg.100]    [Pg.322]    [Pg.282]    [Pg.1077]    [Pg.79]    [Pg.260]    [Pg.704]    [Pg.706]    [Pg.707]    [Pg.708]    [Pg.709]    [Pg.712]    [Pg.198]    [Pg.53]    [Pg.825]    [Pg.18]    [Pg.146]    [Pg.153]    [Pg.139]    [Pg.136]    [Pg.257]    [Pg.496]    [Pg.505]    [Pg.952]   
See also in sourсe #XX -- [ Pg.188 , Pg.209 , Pg.210 , Pg.211 ]

See also in sourсe #XX -- [ Pg.252 , Pg.253 , Pg.254 , Pg.255 , Pg.256 , Pg.257 , Pg.258 , Pg.259 , Pg.260 ]




SEARCH



SN1 reactions

SN1 substitution

© 2024 chempedia.info