Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Smectic orientation

There has been much activity in the study of monolayer phases via the new optical, microscopic, and diffraction techniques described in the previous section. These experimental methods have elucidated the unit cell structure, bond orientational order and tilt in monolayer phases. Many of the condensed phases have been classified as mesophases having long-range correlational order and short-range translational order. A useful analogy between monolayer mesophases and die smectic mesophases in bulk liquid crystals aids in their characterization (see [182]). [Pg.131]

This region has been divided into two subphases, L and S. The L phase differs from the L2 phase in the direction of tilt. Molecules tilt toward their nearest neighbors in L2 and toward next nearest neighbors in L (a smectic F phase). The S phase comprises the higher-ir and lower-T part of L2. This phase is characterized by smectic H or a tilted herringbone structure and there are two molecules (of different orientation) in the unit cell. Another phase having a different tilt direction, L, can appear between the L2 and L 2 phases. A new phase has been identified in the L 2 domain. It is probably a smectic L structure of different azimuthal tilt than L2 [185]. [Pg.134]

LS. In the LS phase the molecules are oriented normal to the surface in a hexagonal unit cell. It is identified with the hexatic smectic BH phase. Chains can rotate and have axial symmetry due to their lack of tilt. Cai and Rice developed a density functional model for the tilting transition between the L2 and LS phases [202]. Calculations with this model show that amphiphile-surface interactions play an important role in determining the tilt their conclusions support the lack of tilt found in fluorinated amphiphiles [203]. [Pg.134]

S. Chains in the S phase are also oriented normal to the surface, yet the unit cell is rectangular possibly because of restricted rotation. This structure is characterized as the smectic E or herringbone phase. Schofield and Rice [204] applied a lattice density functional theory to describe the second-order rotator (LS)-heiTingbone (S) phase transition. [Pg.134]

Figure C2.2.4. Types of smectic phase. Here tire layer stacking (left) and in-plane ordering (right) are shown for each phase. Bond orientational order is indicated for tire hexB, SmI and SmF phases, i.e. long-range order of lattice vectors. However, tliere is no long-range translational order in tliese phases. Figure C2.2.4. Types of smectic phase. Here tire layer stacking (left) and in-plane ordering (right) are shown for each phase. Bond orientational order is indicated for tire hexB, SmI and SmF phases, i.e. long-range order of lattice vectors. However, tliere is no long-range translational order in tliese phases.
NMR is not the best method to identify thennotropic phases, because the spectmm is not directly related to the symmetry of the mesophase, and transitions between different smectic phases or between a smectic phase and the nematic phase do not usually lead to significant changes in the NMR spectmm [ ]. However, the nematic-isotropic transition is usually obvious from the discontinuous decrease in orientational order. NMR can, however,... [Pg.2554]

The Maier-Saupe tlieory was developed to account for ordering in tlie smectic A phase by McMillan [71]. He allowed for tlie coupling of orientational order to tlie translational order, by introducing a translational order parameter which depends on an ensemble average of tlie first haniionic of tlie density modulation noniial to tlie layers as well as / i. This model can account for botli first- and second-order nematic-smectic A phase transitions, as observed experimentally. [Pg.2556]

The transition from smectic A to smectic B phase is characterized by tire development of a sixfold modulation of density witliin tire smectic layers ( hexatic ordering), which can be seen from x-ray diffraction experiments where a sixfold symmetry of diffuse scattering appears. This sixfold symmetry reflects tire bond orientational order. An appropriate order parameter to describe tlie SmA-SmB phase transition is tlien [18,19 and 20]... [Pg.2560]

Eor example, bis-(T- -heptyloxyben2yHdene)-l,4-phenylenediamine [24679-01-4] exhibits seven Hquid crystal phases the nematic and six smectic phases (19). The order of appearance of the phases as the temperature is increased is usually consistent with a decrease in the long-range positional and orientational order of the molecules. Eor example, ethyl 4-(4 -ethoxyben2yHdeneamino)cinnamate [2863-94-7] (3) has three Hquid crystal phases (20). [Pg.197]

Let us enter the world of liquid crystals built by the purely entropic forces present in hard body systems. The phase diagram of hard spherocylinders (HSC) shows a rich variety of liquid crystalline phases [71,72]. It includes the isotropic, nematic, smectic A, plastic, and solid phases [73]. In a plastic crystal the particle centers lie on lattice sites, but the orientations of the... [Pg.762]

Finally, whenever in matter there is no long range positional but still long-range orientational order, we have ordered liquids, instead of solids. The X-ray spectral features of an ordered liquid with a smectic structure is the occurrence of one or a few meridional sharp reflections in the fiber spectrum, plus polarized halos for an ordered liquid with nematic structure the occurrence of polarized haloes, only. [Pg.187]

Fig. 28. Room temperature 2H NMR spectra of the smectic liquid crystalline polymer (m = 6), oriented in its nematic phase by the magnetic field (8.5 T) of the NMR spectrometer with director ii parallel (left) and perpendicular (right) to the magnetic field... Fig. 28. Room temperature 2H NMR spectra of the smectic liquid crystalline polymer (m = 6), oriented in its nematic phase by the magnetic field (8.5 T) of the NMR spectrometer with director ii parallel (left) and perpendicular (right) to the magnetic field...
FIG. 33 X-Ray Diffraction Patterns of Ammonium Dodecane 1-Sulfonate. 2-D (a) and 3-D plots (b) of oriented samples. Both pictures show the presence of a nonordered smectic phase, since the diffuse, weak, wide-angle diffraction indicates only an average distance between the molecules and the sharp, intense small angle reflections a very well defined layer distance. The reflections are perpendicular to each other, so the structure should correspond to an orthogonal smectic A type. The pictures were obtained using an x-1000 area detector from Siemens. [Pg.191]

Analytical approaches to understanding the effect of molecular flexibility on orientational order have concentrated on both the isotropic-nematic and the nematic-smectic transition [61, 62] and mean field theory has shown that cholesteric pitch appears not to depend on the flexibility of the molecule [63]. [Pg.27]

When suitably doped, MBF can form a surface-stabilised-ferroelectric smectic-C (SSFLC) structure. Using simple assumptions regarding core orientations, Binger and Hanna are able to place an upper limit on the SSFLC cone angle for MBF of 30°. [Pg.54]

For smectic phases the defining characteristic is their layer structure with its one dimensional translational order parallel to the layer normal. At the single molecule level this order is completely defined by the singlet translational distribution function, p(z), which gives the probability of finding a molecule with its centre of mass at a distance, z, from the centre of one of the layers irrespective of its orientation [19]. Just as we have seen for the orientational order it is more convenient to characterise the translational order in terms of translational order parameters t which are the averages of the Chebychev polynomials, T (cos 2nzld)-, for example... [Pg.74]

The two singlet distribution functions are not in themselves sufficient to characterise the order in a smectic A phase because there is, in general, a correlation between the position of a molecule in a smectic layer and its orientation. We need, therefore, the mixed singlet distribution function P(z,cos ) which gives the probability of finding a particle at position z and at an orientation P with respect to the director [18,19]. At the level of description provided by the order parameters it is necessary to introduce the mixed order parameter... [Pg.75]

The distribution of the intermolecular vector is also of value in distinguishing between smectic A and smectic B phases with the latter having long range bond orientational order [23, 24]. At the local level we can define a bond orientational order parameter, PeCn) for molecule i at position q by [25]... [Pg.76]

Here the summation is over molecules k in the same smectic layer which are neighbours of i and 0 is the angle between the intermolecular vector (q—r ) projected onto the plane normal to the director and a reference axis. The weighting function w(rjk) is introduced to aid in the selection of the nearest neighbours used in the calculation of PsCq). For example w(rjk) might be unity for separations less than say 1.4 times the molecular width and zero for separations greater than 1.8 times the width with some interpolation between these two. The phase structure is then characterised via the bond orientational correlation function... [Pg.76]

The correlation between the translational and orientational order is reflected by the mixed singlet orientational and translational distribution function P(z, cos ). The results for this are shown in Fig. 7 for the smectic A... [Pg.89]


See other pages where Smectic orientation is mentioned: [Pg.1131]    [Pg.44]    [Pg.297]    [Pg.1131]    [Pg.44]    [Pg.297]    [Pg.133]    [Pg.2545]    [Pg.2547]    [Pg.2547]    [Pg.2553]    [Pg.2553]    [Pg.2564]    [Pg.313]    [Pg.318]    [Pg.193]    [Pg.194]    [Pg.306]    [Pg.40]    [Pg.762]    [Pg.763]    [Pg.386]    [Pg.387]    [Pg.390]    [Pg.52]    [Pg.3]    [Pg.75]    [Pg.81]    [Pg.83]    [Pg.87]    [Pg.88]    [Pg.89]    [Pg.90]    [Pg.90]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Bond Orientational Order in a Single Smectic Layer and Hexatic Phase

Orientation chiral smectics

Smectic phases orientation

© 2024 chempedia.info