Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small analyte quantitation

It is relatively difficult to provide an exact quantitative analysis of compounds that are unstable and occur only in traces in foods. Serious errors are possible, particularly when the volatile flavor compounds are present in extremely small amounts, are unstable, and/or are reactive, and the workup conditions selected often result in considerable losses. It is known that quantitative results obtained for flavor compounds in foods can be significantly affected by the isolation method and the structure of the analyte. Quantitative analysis can readily give erroneous results, particularly when the internal standards that are used differ from the analytes in terms of their chemical and physical properties, as is usually the case. Although the method of quantifying volatile compounds with the aid of internal standards has been in use for quite some time, the literature repeatedly... [Pg.179]

The physics of X-ray refraction are analogous to the well known refraction of light by optical lenses and prisms, governed by Snell s law. The special feature is the deflection at very small angles of few minutes of arc, as the refractive index of X-rays in matter is nearly one. Due to the density differences at inner surfaces most of the incident X-rays are deflected [1]. As the scattered intensity of refraction is proportional to the specific surface of a sample, a reference standard gives a quantitative measure for analytical determinations. [Pg.558]

Quantitative Analysis Using the Method of Standard Additions Because of the difficulty of maintaining a constant matrix for samples and standards, many quantitative potentiometric methods use the method of standard additions. A sample of volume, Vx) and analyte concentration, Cx, is transferred to a sample cell, and the potential, (ficell)x) measured. A standard addition is made by adding a small volume, Vs) of a standard containing a known concentration of analyte, Cs, to the sample, and the potential, (ficell)s) measured. Provided that Vs is significantly smaller than Vx, the change in sample matrix is ignored, and the analyte s activity coefficient remains constant. Example 11.7 shows how a one-point standard addition can be used to determine the concentration of an analyte. [Pg.488]

Ion-specific electrodes can be used for the quantitative determination of perchlorates in the parts per million (ppm) range (109) (see Electro ANALYTICAL techniques). This method is linear over small ranges of concentration, and is best appHed in analyzing solutions where interferences from other ionic species do not occur. [Pg.68]

Frequently, preconcentration of an analyte is necessary because the detector used for quantitation may not have the necessary detectabiUty, selectivity, or freedom from matrix interferences (32). Significant sample losses can occur during this step because of very small volume losses to glass walls of the recovery containers, pipets, and other glassware. [Pg.242]

Another important reaction (between H2O, I2 and SO2) forms the basis of the quantitative determination of water when present in small amounts. The reaction, originally investigated by R. Bunsen in 1835, was introduced in 1935 as an analytical reagent by Karl Fischer who believed, incorrectly, that each mole of I2 was equivalent to 2 moles of H2O ... [Pg.627]

The function of the analyst is to obtain a result as near to the true value as possible by the correct application of the analytical procedure employed. The level of confidence that the analyst may enjoy in his results will be very small unless he has knowledge of the accuracy and precision of the method used as well as being aware of the sources of error which may be introduced. Quantitative analysis is not simply a case of taking a sample, carrying out a single determination and then claiming that the value obtained is irrefutable. It also requires a sound knowledge of the chemistry involved, of the possibilities of interferences from other ions, elements and compounds as well as of the statistical distribution of values. The purpose of this chapter is to explain some of the terms employed and to outline the statistical procedures which may be applied to the analytical results. [Pg.127]

In 1951Castaing8 published results to show that an electron microscope could be converted into a useful x-ray emission spectrograph for point-to-point exploration on a micron scale. The conversion consisted mainly in adding a second electrostatic lens to obtain a narrower electron beam for the excitation of an x-ray spectrum, and adding an external spectrometer for analysis of the spectrum and measurement of analytical-line intensity. Outstanding features of the technique were the small size of sample (1 g cube, or thereabouts) and the absence of pronounced absorption and enhancement effects, which, of course, is characteristic of electron excitation (7.10). Castaing8 gives remarkable quantitative results for copper alloys the results in parentheses are the quotients... [Pg.261]

In conventional mass spectromefiy, quantitative determinations are often carried out by using selected-ion monitoring (SIM), i.e. by monitoring the intensities of a small number of ions characteristic of the analyte of interest (see Section 3.5.2.1 below). [Pg.69]

Chlorambucil - there is no problem with the quantitation ion (at m/z 254), although the second ion proves to be a little difficult. While the ion at m/z 303 is the obvious choice, this is not very intense and therefore for samples containing small amounts of analyte the precision of measurement of this ion will be reduced and it may not be detectable at all levels at which the quantitation ion is observed. We could possibly consider the (M- -2) ion, as the combination o/m/z 254 (high mass, and therefore reasonable specificity), the presence of one chlorine, and the chromatographic retention time could be considered sufficient for definitive identification in those cases in which the intensity o/m/z 303 is insufficient. [Pg.73]

Setting An established analytical method consisting of the extraction of a drag and its major metabolite from blood plasma and the subsequent HPLC quantitation was precisely described in a R D report, and was to be transferred to three new labs across international boundaries. (Cf. Section 4.32.) The originator supplied a small amount of drug standard and a number of vials containing frozen blood plasma with the two components in a fixed ratio, at concentrations termed lo, mid, and hi. The report provided for evaluations both in the untransformed (linear/linear depiction)... [Pg.254]

Microchemistiy - a branch of analytical chemistry that involves procedures that require handling of very small quantities of materials. Specifically it refers to carrying out various chemical operations (weighing, purification, quantitative and qualitative analysis) on samples ranging from 0.1 to 10 milligrams. (The Condensed Chemical Dictionary 1971). [Pg.127]


See other pages where Small analyte quantitation is mentioned: [Pg.149]    [Pg.459]    [Pg.610]    [Pg.344]    [Pg.362]    [Pg.116]    [Pg.380]    [Pg.146]    [Pg.161]    [Pg.1019]    [Pg.979]    [Pg.262]    [Pg.648]    [Pg.1179]    [Pg.70]    [Pg.400]    [Pg.367]    [Pg.90]    [Pg.451]    [Pg.162]    [Pg.282]    [Pg.373]    [Pg.325]    [Pg.453]    [Pg.800]    [Pg.254]    [Pg.376]    [Pg.70]    [Pg.200]    [Pg.251]    [Pg.871]    [Pg.70]    [Pg.112]    [Pg.10]    [Pg.20]    [Pg.359]    [Pg.624]   
See also in sourсe #XX -- [ Pg.388 , Pg.389 , Pg.390 , Pg.391 , Pg.392 , Pg.393 , Pg.394 , Pg.395 , Pg.396 , Pg.397 , Pg.398 , Pg.399 , Pg.400 ]




SEARCH



Analyte quantitation

Analytical Quantitation

© 2024 chempedia.info