Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single-layer potentials

The function w(x0) is a superposition of a single-layer potential of density du/dn (first boundary integral),... [Pg.518]

A single-layer potential is a function W which can be written as... [Pg.33]

The reaction potential VR is therefore a single-layer potential. In order to calculate the apparent surface charge (ASC) distribution a, one makes use on the one hand of the relations... [Pg.35]

The vacuum potential Poisson equation with e = 1 in the whole space. The induced potential consists of two components and

charge distributions. The normal derivatives d/dn of the volume potentials

(r), however, obeys a singular matching condition on S (80/dn)i — d

[Pg.101]

The first case is relevant in the discussion of colloid stability of section C2.6.5. It uses the potential around a single sphere in the case of a double layer that is thin compared to the particle, Ka 1. Furthennore, it is assumed that the surface separation is fairly large, such that exp(-K/f) 1, so the potential between two spheres can be calculated from the sum of single-sphere potentials. Under these conditions, is approximated by [42] ... [Pg.2678]

The crater surfaces obtained in the LA-TOF-MS experiment on the TiN-TiAlN-Fe sample were remarkably smooth and clearly demonstrated the Gaussian intensity distribution of the laser beam. Fig. 4.45 shows an SEM image of the crater after 100 laser pulses (fluence 0.35 J cm ). The crater is symmetrical and bell-shaped. There is no significant distortion of the single layers. Fig. 4.45 is an excellent demonstration of the potential of femtosecond laser ablation, if the laser beam had a flat-top, rather than Gaussian, intensity profile. [Pg.239]

Comparison of the spectral response and of the power efficiency of these first conjugated polymer/fullerene bilayer devices with single layer pure conjugated polymer devices showed that the large potential of the photoinduced charge transfer of a donor-acceptor system was not fully exploited in the bilayers. The devices still suffer from antibatic behavior as well as from a low power conversion efficiency. However, the diode behavior, i.e. the rectification of these devices, was excellent. [Pg.284]

Figures 12-12 and 12-13 document that trap-free SCL-conduction can, in fact, also be observed in the case of electron transport. Data in Figure 12-12 were obtained for a single layer of polystyrene with a CF -substituted vinylquateiphenyl chain copolymer, sandwiched between an ITO anode and a calcium cathode and given that oxidation and reduction potentials of the material majority curriers can only be electrons. Data analysis in terms of Eq. (12.5) yields an electron mobility of 8xl0 ycm2 V 1 s . The rather low value is due to the dilution of the charge carrying moiety. The obvious reason why in this case no trap-limited SCL conduction is observed is that the ClVquatciphenyl. substituent is not susceptible to chemical oxidation. Figures 12-12 and 12-13 document that trap-free SCL-conduction can, in fact, also be observed in the case of electron transport. Data in Figure 12-12 were obtained for a single layer of polystyrene with a CF -substituted vinylquateiphenyl chain copolymer, sandwiched between an ITO anode and a calcium cathode and given that oxidation and reduction potentials of the material majority curriers can only be electrons. Data analysis in terms of Eq. (12.5) yields an electron mobility of 8xl0 ycm2 V 1 s . The rather low value is due to the dilution of the charge carrying moiety. The obvious reason why in this case no trap-limited SCL conduction is observed is that the ClVquatciphenyl. substituent is not susceptible to chemical oxidation.
Figure 13-4. Encigy level diagnim of a single-layer OLED, where the organic malerial is depicted as a fully depleted semiconductor. The valence band Ey corresponds to the HOMO and the conduction band Ec corresponds to the LUMO. Tile Fermi levels of the two metal electrodes are marked as Et-. Upon contact a built-in potential is established and needs to be compensated for, before the device will begin to operating. Figure 13-4. Encigy level diagnim of a single-layer OLED, where the organic malerial is depicted as a fully depleted semiconductor. The valence band Ey corresponds to the HOMO and the conduction band Ec corresponds to the LUMO. Tile Fermi levels of the two metal electrodes are marked as Et-. Upon contact a built-in potential is established and needs to be compensated for, before the device will begin to operating.
Recently, Mailiaras et al. [ 1511 have shown that for the analysis of the current-voltage characteristics of single layer OLEDs, it is of fundamental importance to properly account for the built-in potential. The electrical characteristics of MEH-... [Pg.546]

Smectic A and C phases are characterized by a translational order in one dimension and a liquid-like positional order in two others. In the smectic A phase the molecules are oriented on average in the direction perpendicular to the layers, whereas in the smectic C phase the director is tilted with respect to the layer normal. A simple model of the smectic A phase has been proposed by McMillan [8] and Kobayashi [9] by extending the Maier-Saupe approach for the case of one-dimensional density modulation. The corresponding mean field, single particle potential can be expanded in a Fourier series retaining only the leading term ... [Pg.202]

Figure 2.2 (a) The structure of the electrode/electrolyte interface, assuming a single layer of solvated ions adjacent to the electrode. The distance of closest approach of the ions to the electrode is a, and the ion sheet forms the outer Helmholtz plane (OHP). (b) The variation of the potential as a function of the distance from the metal surface for the interface shown in (a). [Pg.45]

Scheme 19 shows that arylation of spz G-H bonds with aryl iodides can be applied to the synthesis of light-emitting and liquid crystalline molecules.164 The Pd-catalyzed tandem G-H coupling reactions of thiazole with aryl iodides give the differently substituted 2,5-diarylthiazoles, which would be a highly potential single-layer EL method with polarized light emission. [Pg.244]

Since the ionization potential of 238 matches closely the work function of PEDOT (5.1-5.3 eV) [335], the hole injection is dramatically improved. Accordingly, the device ITO/PEDOT/237 238(7 3)/Al has a significantly improved EL efficiency, tjel= 1.5cd/A, two orders of magnitude higher than that of single-layer PLED with 237, six times higher than that of bilayer PLED with triarylamine polymer HTL, and almost twice as high as that of PF blends with low molecular triphenylamine HT materials (in device with Ca electrode) [321]. [Pg.145]

An alternative approach involves integrating out the elastic degrees of freedom located above the top layer in the simulation.76 The elimination of the degrees of freedom can be done within the context of Kubo theory, or more precisely the Zwanzig formalism, which leads to effective (potentially time-dependent) interactions between the atoms in the top layer.77-80 These effective interactions include those mediated by the degrees of freedom that have been integrated out. For periodic solids, a description in reciprocal space decouples different wave vectors q at least as far as the static properties are concerned. This description in turn implies that the computational effort also remains in the order of L2 InL, provided that use is made of the fast Fourier transform for the transformation between real and reciprocal space. The description is exact for purely harmonic solids, so that one can mimic the static contact mechanics between a purely elastic lattice and a substrate with one single layer only.81... [Pg.104]

Fig. 15 Simplified schematic representation of the electronic energy levels in a single-layer PLED. CB and VB are the conduction hand and valence hand, respectively, of the semiconducting polymer, which correspond to the ionization potential (IP) and electron affinity (EA) relative to vacuum level (EV). The work functions for anode (and cathode ( Fig. 15 Simplified schematic representation of the electronic energy levels in a single-layer PLED. CB and VB are the conduction hand and valence hand, respectively, of the semiconducting polymer, which correspond to the ionization potential (IP) and electron affinity (EA) relative to vacuum level (EV). The work functions for anode (and cathode (<Pc) and the band gap (EG) are also indicated...

See other pages where Single-layer potentials is mentioned: [Pg.512]    [Pg.33]    [Pg.33]    [Pg.550]    [Pg.565]    [Pg.512]    [Pg.33]    [Pg.33]    [Pg.550]    [Pg.565]    [Pg.146]    [Pg.132]    [Pg.243]    [Pg.39]    [Pg.47]    [Pg.281]    [Pg.498]    [Pg.592]    [Pg.402]    [Pg.39]    [Pg.88]    [Pg.510]    [Pg.138]    [Pg.617]    [Pg.611]    [Pg.234]    [Pg.446]    [Pg.60]    [Pg.67]    [Pg.192]    [Pg.89]    [Pg.171]    [Pg.514]    [Pg.119]    [Pg.77]    [Pg.90]   
See also in sourсe #XX -- [ Pg.512 ]

See also in sourсe #XX -- [ Pg.550 ]




SEARCH



Single layer

© 2024 chempedia.info