Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single-cycle transient analysis

Chemical relaxation techniques have been employed to study the rates of elementary reaction steps. The two most useful variables for the system control are the concentrations of the reactants and the reactor temperature. The dynamic responses from the system after the changes of these variables are related to the elementary steps of the catalytic processes. Chemical relaxation techniques can be divided into two general groups, which are single cycle transient analysis (SCTA) and multiple cycle transient analysis (MCTA). In SCTA, the reaction system relaxes to a new steady-state and analysis of this transition furnishes information about intermediate species. In MCTA, the system is periodically switched between two steady-states, e.g. by periodically changing the reactant concentration. [Pg.292]

In an alternative mechanism, the substrate molecule is again coordinated to tetrahedral Zn, with the coordinated water molecule now serving as a site for transient proton transfer, thereby generating a penta-coordin ated zinc intermediate. Formation of this intermediate during substrate turnover was supported by time-resolved freeze-quenched X-ray absorption fine spectroscopic analysis of the thermophilic bacterium Thermoanaerobaaer brockii alcohol dehydrogenase (TbADH). These results thus provided further evidence for the dynamic alteration of the Zn from a tetrahedral to a penta-coordinated form with detection of two new penta-coordinated intermediate states these included the water molecule in the zinc coordination sphere during a single catalytic cycle. [Pg.591]

The widespread use of large-amplitude relaxation techniques in the investigations of anodic organic oxidations, requires further comment on the value of these methods. Reinmuth divided these techniques into three classes based on the types of applications quantitative kinetic studies, qualitative kinetic studies, and analytical studies. We are not concerned here with the analytical applications. For studies in kinetics, controlled-potential techniques, particularly linear-potential scan, in either single sweep or in cycles, and to some extent chronopotentiometry, have been primarily employed. Chronopotentiometry has been successfully utilized in the study of transient reactions, e.g., the reaction of CO with platinum oxide or the reaction of oxalic acid with platinum oxide, and the study of simple charge-transfer reactions with linear diffusion (cf. Refs. 159-161). However, since the general application of chronopotentiometry is severely limited for the study of anodic organic oxidations, as commented previously, this technique will not be further discussed. The quantitative analysis of data obtained by linear potential scan techniques is complicated because the form of theoretical results even for the simplest cases, requires the use of computers and consequently very little quantitative kinetic information has been obtained. This... [Pg.71]


See other pages where Single-cycle transient analysis is mentioned: [Pg.506]    [Pg.506]    [Pg.29]    [Pg.91]    [Pg.206]    [Pg.1882]    [Pg.1883]    [Pg.388]    [Pg.432]    [Pg.302]    [Pg.200]    [Pg.390]    [Pg.1043]    [Pg.64]    [Pg.376]    [Pg.67]    [Pg.449]    [Pg.455]   
See also in sourсe #XX -- [ Pg.505 , Pg.506 ]




SEARCH



Cycle analysis

Cycle transient

Single-cycle

© 2024 chempedia.info