Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simulation molecular mechanical

More detailed aspects of protein function can be obtained also by force-field based approaches. Whereas protein function requires protein dynamics, no experimental technique can observe it directly on an atomic scale, and motions have to be simulated by molecular dynamics (MD) simulations. Also free energy differences (e.g. between binding energies of different protein ligands) can be characterised by MD simulations. Molecular mechanics or molecular dynamics based approaches are also necessary for homology modelling and for structure refinement in X-ray crystallography and NMR structure determination. [Pg.263]

Empirical Forcefields for Biomolecular Simulation Molecular Mechanics (MM) Methods... [Pg.24]

The simulations based on Eq. [10.10] are called MD simulations. Molecular mechanics ignores the time evolution of the system and instead focuses on finding particular geometries and their associated energies or other static properties. [Pg.225]

At any geometry g.], the gradient vector having components d EjJd Q. provides the forces (F. = -d Ej l d 2.) along each of the coordinates Q-. These forces are used in molecular dynamics simulations which solve the Newton F = ma equations and in molecular mechanics studies which are aimed at locating those geometries where the F vector vanishes (i.e. tire stable isomers and transition states discussed above). [Pg.2157]

The complexity of polymeric systems make tire development of an analytical model to predict tlieir stmctural and dynamical properties difficult. Therefore, numerical computer simulations of polymers are widely used to bridge tire gap between tire tlieoretical concepts and the experimental results. Computer simulations can also help tire prediction of material properties and provide detailed insights into tire behaviour of polymer systems. A simulation is based on two elements a more or less detailed model of tire polymer and a related force field which allows tire calculation of tire energy and tire motion of tire system using molecular mechanisms, molecular dynamics, or Monte Carlo teclmiques 1631. [Pg.2537]

Singh, U.C., Kollman, P.A. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems Applications to the CH3CI 4- Cl exchange reaction and gas phase protonation of polyethers. J. Comput. Chem. 7 (1986) 718-730. [Pg.29]

Field, M.J., Bash, P.A., Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11 (1990) 700-733. [Pg.29]

In molecular mechanics and molecular dynamics studies of proteins, assig-ment of standard, non-dynamical ionization states of protein titratable groups is a common practice. This assumption seems to be well justified because proton exchange times between protein and solution usually far exceed the time range of the MD simulations. We investigated to what extent the assumed protonation state of a protein influences its molecular dynamics trajectory, and how often our titration algorithm predicted ionization states identical to those imposed on the groups, when applied to a set of structures derived from a molecular dynamics trajectory [34]. As a model we took the bovine... [Pg.188]

Many problems in force field investigations arise from the calculation of Coulomb interactions with fixed charges, thereby neglecting possible mutual polarization. With that obvious drawback in mind, Ulrich Sternberg developed the COSMOS (Computer Simulation of Molecular Structures) force field [30], which extends a classical molecular mechanics force field by serai-empirical charge calculation based on bond polarization theory [31, 32]. This approach has the advantage that the atomic charges depend on the three-dimensional structure of the molecule. Parts of the functional form of COSMOS were taken from the PIMM force field of Lindner et al., which combines self-consistent field theory for r-orbitals ( nr-SCF) with molecular mechanics [33, 34]. [Pg.351]

M. Jalaie, K. B. Lipkowitz, Published force field parameters for molecular mechanics, molecular dynamics, and Monte Carlo simulations, in Reviews in Computational Chemistry, Vol. 14, K.B. Lipkowitz, D. B. Boyd (Eds.), Wiley-VCH, New York, 2000, pp. 441-486. [Pg.356]

T. Fox, C. Chipot, A. PohorUle, The development/application of a minimalisf organic/biochemical molecular mechanic force field using a combination of ab-initio calculations and experimental data, in Computer Simulation of Biomolecular Systems. [Pg.357]

A Fortran90 library for the simulation of molecular systems using molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM)/ MM) potential energy functions. http //www.ibs.fr/ext/labos/LDM/projet6/... [Pg.400]

Rappe A K, C J Casewit, K S Colwell, W A Goddard III and W M Skiff 1992. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. Journal of the American Chemical Society 114 10024-10035. [Pg.269]

Dne approach to the simulation of chemical reactions in solution is to use a combination t)f [uantum mechanics and molecular mechanics. The reacting parts of the system are treated [uantum mechanically, with the remainder being modelled using the force field. The total mergy Etot for the system can be written ... [Pg.630]

Field M J, P A Bash and M Karplus 1990. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. Journal of Computational Chemistry 11 700-733. [Pg.650]

Molecular dynamics is a simulation of the time-dependent behavior of a molecular system, such as vibrational motion or Brownian motion. It requires a way to compute the energy of the system, most often using a molecular mechanics calculation. This energy expression is used to compute the forces on the atoms for any given geometry. The steps in a molecular dynamics simulation of an equilibrium system are as follows ... [Pg.60]

Compute the forces on each atom from the energy expression. This is usually a molecular mechanics force held designed to be used in dynamical simulations. [Pg.60]

Model optimization is a further refinement of the secondary and tertiary structure. At a minimum, a molecular mechanics energy minimization is done. Often, molecular dynamics or simulated annealing are used. These are frequently chosen to search the region of conformational space relatively close to the starting structure. For marginal cases, this step is very important and larger simulations should be run. [Pg.189]


See other pages where Simulation molecular mechanical is mentioned: [Pg.341]    [Pg.22]    [Pg.844]    [Pg.314]    [Pg.341]    [Pg.22]    [Pg.844]    [Pg.314]    [Pg.2537]    [Pg.41]    [Pg.131]    [Pg.163]    [Pg.227]    [Pg.338]    [Pg.359]    [Pg.201]    [Pg.11]    [Pg.13]    [Pg.246]    [Pg.270]    [Pg.295]    [Pg.329]    [Pg.422]    [Pg.524]    [Pg.617]    [Pg.626]    [Pg.632]    [Pg.646]    [Pg.704]    [Pg.707]    [Pg.64]    [Pg.69]    [Pg.95]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Hybrid quantum and molecular mechanical simulation

Molecular dynamic simulations statistical mechanical

Molecular dynamics simulations mechanical scheme

Molecular dynamics simulations quantum mechanical charge field

Molecular dynamics simulations quantum mechanics

Molecular mechanics simulation

Molecular mechanics simulation

Molecular simulations

Quantum mechanical/molecular mechanics QM/MM) simulation

Statistical mechanics molecular simulation

© 2024 chempedia.info