Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver carbonate oxidation

O/t/20-arylation of benzoic acids is often preferable to ortho-arylation of benzamides if conversion of the amide moiety to other functional groups is desired. However, only a few reports have dealt with the orf/io-functionalization of free benzoic acids due to challenges that involve such transformations. The reactions can be complicated by decarboxylation of the product and the starting material. Despite those difficulties, several methods for direct o/t/io-arylation of benzoic acids have been developed. Yu has shown that arylboronates are effective in arylation of benzoic acids under palladium catalysis [59], The reactions require the presence of palladium acetate catalyst, silver carbonate oxidant, and benzoquinone. Even more interestingly, the procedure is applicable to the arylation of unactivated sp3 C-H bonds in tertiary carboxylic acids such as pivalic acid (Scheme 13) if aryl iodide coupling partner is used. Aryl trifluoroborates can also be used [60],... [Pg.68]

Silver carbonate on Celite causes the fragmentation of cyanohydrins and, more notably, of ethynyl methanols, the parent ketone being regenerated in each case the danger of silver carbonate oxidation in the presence of these functions is thus noted. ... [Pg.185]

Coesite. Coesite, the second most dense (3.01 g/cm ) phase of silica, was first prepared ia the laboratory by heating a mixture of sodium metasibcate and diammonium hydrogen phosphate or another mineraliser at 500—800°C and 1.5—3.5 GPa (14,800—34,540 atm). Coesite has also been prepared by oxidation of silicon with silver carbonate under pressure (67). The stmcture is monoclinic = 717 pm, Cg = 1.238 pm, and 7 = 120°. [Pg.476]

Silver Carbonate. Silver carbonate, Ag2C02, is produced by the addition of an alkaline carbonate solution to a concentrated solution of silver nitrate. The pH and temperature of the reaction must be carefully controlled to prevent the formation of silver oxide. A suspension of Ag2C02 is slightly basic because of the extensive hydrolysis of the ions present. Heating soHd Ag2C02 to 218°C gives Ag20 and CO2. [Pg.89]

Silver Fluoride. Silver fluoride, AgF, is prepared by treating a basic silver salt such as silver oxide or silver carbonate, with hydrogen fluoride. Silver fluoride can exist as the anhydrous salt, a dihydrate [72214-21-2] (<42° C), and a tetrahydrate [22424-42-6] (<18° C). The anhydrous salt is colorless, but the dihydrate and tetrahydrate are yellow. Ultraviolet light or electrolysis decomposes silver fluoride to silver subfluoride [1302-01 -8] Ag2p, and fluorine. [Pg.89]

When heated to 100°C, silver oxide decomposes into its elements, and is completely decomposed above 300°C. Silver oxide and sulfur form silver sulfide. Silver oxide absorbs carbon dioxide from the air, forming silver carbonate. [Pg.90]

Silver carbonate, alone or on CeHte, has been used as a catalyst for the oxidation of methyl esters of D-fmctose (63), ethylene (64), propylene (65), trioses (66), and a-diols (67). The mechanism of the catalysis of alcohol oxidation by silver carbonate on CeHte has been studied (68). [Pg.92]

Unlike boron, aluminum, gallium, and indium, thallium exists in both stable univalent (thaHous) and trivalent (thaUic) forms. There are numerous thaHous compounds, which are usually more stable than the corresponding thaUic compounds. The thaUium(I) ion resembles the alkaU metal ions and the silver ion in properties. In this respect, it forms a soluble, strongly basic hydroxide and a soluble carbonate, oxide, and cyanide like the alkaU metal ions. However, like the silver ion, it forms a very soluble fluoride, but the other haUdes are insoluble. Thallium (ITT) ion resembles aluminum, gallium, and indium ions in properties. [Pg.468]

A variety of silver(I) carbenes can be prepared by interaction of a series of imidazolium salts with silver(I) oxide or silver(I) carbonate (OOJCS(D) 4499). With 3-tert-butyl-l-(2 -pyridylmethyl)imidazolium bromide hydrate and 3-(2", 6"-di-Ao-propylphenyl)-l-(2 -pyridylmethyl)imidazolium bromide hydrate, complexes 85 (R = t-Bu, 2",6"-/-Pr2CgH3) result. 3-(2",4",6"-Trimethylphenyl)-l-(2 -pyridylmethyl)imidazolium bromide in turn leads to 86 (R= 2",4",6"-MejCgH2). 3-(2",6"-Di-wo-propylphenyl)-l-(2 -pyridyl)... [Pg.139]

Silver bromide Silver chloride Silver perchlorate Silver cyanide Silver fluoride Silver iodide Silver permar>gate Silver nitrate Silver carbonate Silver oxide Silver sulphate Silver sulphide Silver phosphate... [Pg.459]

Concomitant protection of the amino group and the cis-hydroxyl group of the diol 342 was realized by treatment with formaldehyde to afford the oxazolidine 345, oxidation of which with silver carbonate on Celite gave the... [Pg.191]

Acyclic ADC compounds, which are more correctly named as derivatives of diazene, are generally prepared from hydrazine derivatives. For example, diethyl azodicarboxylate (Chemical Abstracts name diethyl diazene-1,2-dicarboxylate)5 is prepared from hydrazine by treatment with ethyl chloro-formate followed by oxidation with chlorine in benzene-water.6 Other oxidants which have been used include JV-bromosuccinimide,7 nitric acid,8 inorganic nitrates,9 potassium dichromate,10 silver carbonate on celite,11 and phenyl iodosotrifluoroacetate.12 The hydrazine derivative may also be... [Pg.2]

Since the successful exploration of silver(i) oxide usage as a multifunctional precursor for the synthesis of silver(i) A-heterocyclic carbene complexes, there has been an increasing number of reports related to silver(i) A-heterocyclic carbene chemistry. Silver(i) oxide can act as a weak base to deprotonate imidazolium salts, generating the free A-heterocyclic carbene ligands in situ, which then forms the silver(i) carbene complexes readily. This reaction can take place in the presence of air and moisture, and as a result, no special treatment in regard to the solvents has to be undertaken. More importantly, its basicity is rather specific toward the deprotonation at the G2 position of the imidazole moiety. Exploration of using silver(i) carbonate as a milder precursor in place of silver(i) oxide has also been pursued, but longer reaction times are usually required. [Pg.206]

In contrast to the oxidation of acyclic polyhydric alcohols in benzene,508 treatment of 1,2-O-isopropylidene-a-D-glucofuranose with silver carbonate-on-Celite in boiling methanol led to selective oxidation of the primary hydroxyl group, with the formation of the al-duronic acid derivative in 68% yield.517... [Pg.98]

Optimum yields of (3-vinyl-y-butyrolactols from the Pd(II) promoted reaction of vinyl triflates with Z-but-2-en-l,4-diol (Scheme 6.33) are attained when tetra-n-butylammonium chloride is added (47]. The lactol is conveniently oxidized to the lactone with celite-supported silver carbonate. The corresponding arylbutyrolactols are obtained in high yield (70-80%) from an analogous reaction of iodoarenes with the enediol. The yields of 2-alkenyl-2,5-dihydrofurans, resulting from the Pd(0) catalysed reaction of cyclic alkynylcarbonates with acrylic esters via tandem C-C and C-0 bond forming reactions, are enhanced by the presence of tetra-n-butyl-ammonium fluoride (e.g. Scheme 6.33) (48]. [Pg.297]


See other pages where Silver carbonate oxidation is mentioned: [Pg.113]    [Pg.26]    [Pg.214]    [Pg.113]    [Pg.26]    [Pg.214]    [Pg.298]    [Pg.458]    [Pg.109]    [Pg.241]    [Pg.241]    [Pg.139]    [Pg.42]    [Pg.1518]    [Pg.420]    [Pg.439]    [Pg.791]    [Pg.60]    [Pg.58]    [Pg.161]    [Pg.97]    [Pg.229]    [Pg.187]    [Pg.396]    [Pg.139]   


SEARCH



Alcohols, secondary, oxidation with silver carbonate

Carbon monoxide oxidation silver oxide catalyst

Mechanism silver carbonate oxidation

Oxidation silver

Oxidation with silver carbonate

Oxidation with silver carbonate on Celite

Silver carbonate oxidant

Silver carbonate oxidant

Silver carbonate, oxidizing agent

Silver oxidant

Silver oxide

Silver oxide oxidation

© 2024 chempedia.info