Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver and compounds

Grayson M, ed. 1978. Silver and silver alloys Silver and compounds. Kirk-Othmer encyclopedia of chemical technology. Vol. 21,3rd ed. 1-32. [Pg.146]

Hunter D. 1983. Silver and compounds. In Parmeggiani L, ed. Encyclopaedia of occupational health and safety. Vol. 2, 3rd ed. Geneva International Labour Office, 2047-2048. [Pg.149]

Sittig M. 1985. Silver and Compounds. Handbook of toxic and hazardous chemicals and carcinogens. 2nd ed. Park Ridge, NJ Noyes Data Corporation, 789-790. [Pg.162]

It is a colourless gas which decomposes on heating above 420 K to give metallic tin, often deposited as a mirror, and hydrogen. It is a reducing agent and will reduce silver ions to silver and mercury(II) ions to mercury. SnSn bonding is unknown in hydrides but does exist in alkyl and aryl compounds, for example (CH3)3Sn-Sn(CH3)3. [Pg.177]

The more noble metals (for example copper, mercury and silver) can form oxides, and exhibit variable oxidation state in such compounds (for example CU2O, CuO), but it is not easy to prepare such oxides by direct action of oxygen on the metal, and elevated temperatures are necessary. Moreover, in the case of silver and mercury, loss of oxygen from the oxide by heating is easy. The oxidesare, however, basic (for example Ag20 - Ag, CuO - Cu in acids). [Pg.286]

Iodine occurs to a minute extent (less than 0.001 %) in sea water, but is found in greater concentration, combined in organic form, in certain seaweeds, in oysters and in cod livers. Crude Chile saltpetre, or caliche contains small amounts of sodium iodate, NalOj. from which iodine can be obtained (see below). Some insoluble iodides, for example liiose of silver and mercury(II), occur in Mexico. Iodine is found in the human body in the compound thyroxin in the thyroid gland deficiency of iodine in diet causes enlargement of this gland (goitre). [Pg.319]

Iodides. Iodides range from the completely ionic such as potassium iodide [7681-11-0] KI, to the covalent such as titanium tetraiodide [7720-83-4J, Til. Commercially, iodides are the most important class of iodine compounds. In general, these are very soluble in water and some are hygroscopic. However, some iodides such as the cuprous, lead, silver and mercurous, are insoluble. [Pg.365]

The pyrometaHurgical processes, ie, furnace-kettle refining, are based on (/) the higher oxidation potentials of the impurities such as antimony, arsenic, and tin, ia comparison to that of lead and (2) the formation of iasoluble iatermetaUic compounds by reaction of metallic reagents such as 2iac with the impurities, gold, silver and copper, and calcium and magnesium with bismuth (Fig. 12). [Pg.43]

By agreement between the purchaser and the suppHer, analyses may also be requited and limits estabUshed for elements or compounds not specified. This grade is intended for chemical appHcations requiting low silver and bismuth contents. [Pg.52]

Antimicrobial agents are used where there is a need to inhibit bacterial and fungal growth. The additives can consist of copper, germanium, zinc and zinc compounds, metal oxides or sulfides, metal zeofltes, as well as silver and copper oxide-coated inorganic core particles (154—159) (see Industrial ANTIMICROBIAL AGENTS). [Pg.257]

Ammonia forms a great variety of addition or coordination compounds (qv), also called ammoniates, ia analogy with hydrates. Thus CaCl2 bNH and CuSO TNH are comparable to CaCl2 6H20 and CuSO 4H20, respectively, and, when regarded as coordination compounds, are called ammines and written as complexes, eg, [Cu(NH2)4]S04. The solubiHty ia water of such compounds is often quite different from the solubiHty of the parent salts. For example, silver chloride, AgQ., is almost iasoluble ia water, whereas [Ag(NH2)2]Cl is readily soluble. Thus silver chloride dissolves ia aqueous ammonia. Similar reactions take place with other water iasoluble silver and copper salts. Many ammines can be obtained ia a crystalline form, particularly those of cobalt, chromium, and platinum. [Pg.338]

Deposits. Selenium forms natural compounds with 16 other elements. It is a main constituent of 39 mineral species and a minor component of 37 others, chiefly sulfides. The minerals are finely disseminated and do not form a selenium ore. Because there are no deposits that can be worked for selenium recovery alone, there are no mine reserves. Nevertheless, the 1995 world reserves, chiefly in nonferrous metals sulfide deposits, are ca 70,000 metric tons and total resources are ca 130,000 t (24). The principal resources of the world are in the base metal sulfide deposits that are mined primarily for copper, zinc, nickel, and silver, and to a lesser extent, lead and mercury, where selenium recovery is secondary. [Pg.327]

Organ oselenium compounds, such as phosphine selenides, are being evaluated in solvent extraction systems for silver and gold (63). Also, potential pharmaceuticals containing selenium have been prepared (64). [Pg.334]

Table 1. Solubility and Solubility Products of Silver(I) Compounds... Table 1. Solubility and Solubility Products of Silver(I) Compounds...
Silver and sulfur combine even in the cold to form silver sulfide. The tendency of silver to tarnish is an example of the ease with which silver and sulfur compounds react. PoHshes that contain silver complexing agents, such as chloride ion or thiourea, are used to remove silver tarnish. [Pg.90]

Silver(II) Compounds. Sdver(II) is stabilized by coordination with nitrogen heterocychc bases, such as pyridine and dipyridyl. These cationic complexes are prepared by the peroxysulfate oxidation of silver(I) solutions in the presence of an excess of the ligand. An extensive review of the higher oxidation states of silver has beenpubhshed (21). [Pg.90]

Silver(III) Compounds. No simple silver(Ill) compounds exist. When mixtures of potassium or cesium haUdes are heated with silver hahdes ia a stream of fluorine gas, yellow KAgF [23739-18-6] or CsAgF [53585-89-0] respectively, are obtained. These compounds are diamagnetic and extremely sensitive to moisture (21). When Ag2S04 is treated with aqueous potassium persulfate ia the presence of ethylenedibiguanidinium sulfate, the relatively stable Ag(Ill)-ethylenebiguanide complex is formed. [Pg.91]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]

In the Parkes desilvering process, 1—2% zinc is added to molten lead where it reacts with any gold, silver, and copper to form intermetaUic compounds which float as cmsts or dross that is skimmed (see Lead and lead alloys). [Pg.399]


See other pages where Silver and compounds is mentioned: [Pg.1]    [Pg.632]    [Pg.633]    [Pg.130]    [Pg.131]    [Pg.304]    [Pg.906]    [Pg.1]    [Pg.632]    [Pg.633]    [Pg.130]    [Pg.131]    [Pg.304]    [Pg.906]    [Pg.13]    [Pg.81]    [Pg.335]    [Pg.26]    [Pg.160]    [Pg.315]    [Pg.12]    [Pg.114]    [Pg.287]    [Pg.441]    [Pg.451]    [Pg.183]    [Pg.337]    [Pg.91]    [Pg.91]    [Pg.93]    [Pg.519]    [Pg.57]    [Pg.302]    [Pg.555]    [Pg.129]    [Pg.354]   
See also in sourсe #XX -- [ Pg.83 , Pg.85 , Pg.104 , Pg.123 , Pg.170 , Pg.186 , Pg.188 , Pg.229 , Pg.294 , Pg.300 , Pg.324 , Pg.426 , Pg.474 ]




SEARCH



Silver , and

Silver compounds

© 2024 chempedia.info