Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sigmatropic rearrangement double

Conjugate addition of vinyllithium or a vinyl Grignard reagent to enones and subsequent oxidation afford the 1.4-diketone 16[25]. 4-Oxopentanals are synthesized from allylic alcohols by [3,3]sigmatropic rearrangement of their vinyl ethers and subsequent oxidation of the terminal double bond. Dihydrojasmone (18) was synthesized from allyl 2-octenyl ether (17) based on Claisen rearrangement and oxidation[25] (page 26). [Pg.24]

D. The Double [2,3]Sigmatropic Rearrangement of Allylic and Propargylic Sulfoxylates... [Pg.678]

Apparently, the first report of a double [2,3]-sigmatropic rearrangement of an allylic sulfoxide was published by Gaoni132. This author observed that the 1,4-pentadienyl... [Pg.733]

Another version of the double [2,3]-sigmatropic rearrangement, involving the sequence sulfenate - sulfoxide - sulfenate, has also been observed. For example, an effective one-pot epimerization procedure of 17a-vinyl-l 7/i-hydroxysteroids to the rather inaccessible 17-epimers has been achieved by the use of such a rearrangement (equation 35)137. Thus treatment of alcohol 76a with benzenesulfenyl chloride afforded the sulfoxide 77 as a single isomer and E-geometry of the olefinic double bond. Exposure of 77 to trimethyl phosphite in refluxing methanol produced a mixture of 76b and 76a in a 73 27 ratio. [Pg.735]

In accordance with this, the reaction of the electron-donor-substituted butadienes 170 (R=Ph, OMe) with the arylcarbene complexes 163 yields divinylcyclopropane intermediates 168 with high chemoselectivity for the electron-rich double bond in 170, which readily undergo a [3,3]-sigmatropic rearrangement to give the as-6,7-disubstituted 1,4-cycloheptadiene derivatives... [Pg.51]

Double-bond isomerization can also take place in other ways. Nucleophilic allylic rearrangements were discussed in Chapter 10 (p. 421). Electrocyclic and sigmatropic rearrangements are treated at 18-27-18-35. Double-bond migrations have also been accomplished photochemically, and by means of metallic ion (most often complex ions containing Pt, Rh, or Ru) or metal carbonyl catalysts. In the latter case there are at least two possible mechanisms. One of these, which requires external hydrogen, is called the nwtal hydride addition-elimination mechanism ... [Pg.772]

Nucleophilic addition to allenyl sulphoxides 547 proceeds across the a, /(-double bond to produce the corresponding )3-substituted allylic sulphoxides which undergo readily a [2,3]-sigmatropic rearrangement affording substituted allyl alcohols (equation 345). Under proper basic conditions, the initially formed allylic sulphoxides can rearrange to the corresponding vinyl sulphoxides which can be elaborated to 2,4-dienones 549 (equation 346) and a-ketosulphoxides (equation 347) . ... [Pg.353]

It may be of interest to note that the stereospecific transformation shown in equation 15 has been cited as the first reported observation of an 1 - 3 chirality transfer. It is evident that on rearrangement of optically active 6d to 7d, the chiral center at C-a is eliminated and a new one created at C-y. The term self-immolative asymmetric synthesis has also been used to describe syntheses of this kind. As pointed out by Hoffmann , quantitative 1 - 3 chirality transfer will follow from the suprafacial - course of rearrangement, provided the reactant has a uniform configuration at the j8, y-double bond. This stereochemical prediction has also been confirmed by the results obtained in several other [2,3]sigmatropic rearrangements, subsequently reported " . [Pg.671]

Subsequently, Kametani and coworkers observed a similar allylic sulfoxide-sulfenate-sulfoxide rearrangement. These authors reported the exceptionally facile ringopening reaction of condensed cyclobutenes facilitated by arylsulfinyl carbanion substituents. For example, treatment of sulfoxide 68 with butyllithium in tetrahydrofuran at — 30°C for 10 min, followed by normal workup, results in the formation of product 71, which can be explained by the intervention of a double [2,3]-sigmatropic rearrangement of the initial product 69 via 70 (equation 32). A similar double [2,3]-sigmatropic rearrangement of 1,4-pentadienylic sulfoxides has also been reported by Sammes and coworkers. ... [Pg.734]

Selenium dioxide is a useful reagent for allylic oxidation of alkenes. The products can include enones, allylic alcohols, or allylic esters, depending on the reaction conditions. The mechanism consists of three essential steps (a) an electrophilic ene reaction with Se02, (b) a [2,3]-sigmatropic rearrangement that restores the original location of the double bond, and (c) solvolysis of the resulting selenium ester.183... [Pg.1124]

Efficient synthesis of the mycotoxin asteltoxin 189 was accomplished beginning with the cycloaddition between 3,4-dimethylfuran and 3-benzyloxypropanal, which furnished pho-toaldol 183 in 63% yield (Scheme 42)84. Epoxidation from the convex face of this adduct, with subsequent epoxide opening, afforded 184, which was then elaborated through a series of steps to 185. The side chain was introduced via lithiosulfoxide 186 to furnish, after double sigmatropic rearrangement, 187. Hydrolysis of this afforded 188, which was oxidized and elaborated to 189 in two steps. [Pg.300]

Though the PECH decomposes to indefinite fragments with n-butyl lithium or sodium hydride in THF at room temperature, it reacts with sodium methoxide with liberation of Cl in which the -elimination of hydrogen chloride predominates instead of nucleophilic substitution. For instance, PECH in DMSO was reacted with double the molar quantity of sodium methoxide at room temperature for 24 h to give the unsaturated polyether (DS 92.3%,v(C=C) 1630,5 (=CH2) 795 cm" ) after purification by dissolution(DMF)-precipitation (H20) technique. A similar unsaturated polyther was obtained by the pyrolysis of the sulfilimine 13 (110-130°C) but not of sulfoxide 12 (100-150°C). When the polymer 26, was heated to 90°C, the absorption of C=C and =CH2 decreased and a new absorption at 1720 cm appeared and increased. This is explained as a result of [3.3] sigmatropic rearrangement of to afford including C=CH2 and C=0 structure as shown in equation 7. [Pg.56]


See other pages where Sigmatropic rearrangement double is mentioned: [Pg.100]    [Pg.1193]    [Pg.194]    [Pg.151]    [Pg.65]    [Pg.353]    [Pg.665]    [Pg.671]    [Pg.678]    [Pg.734]    [Pg.735]    [Pg.824]    [Pg.915]    [Pg.65]    [Pg.665]    [Pg.678]    [Pg.735]    [Pg.824]    [Pg.561]    [Pg.206]    [Pg.161]    [Pg.427]    [Pg.209]    [Pg.32]    [Pg.385]    [Pg.202]    [Pg.24]    [Pg.171]    [Pg.201]    [Pg.505]    [Pg.381]    [Pg.805]    [Pg.171]    [Pg.41]    [Pg.114]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Sigmatropic -rearrangements rearrangement

© 2024 chempedia.info