Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Short fibers mechanical properties

Nonoxide fibers, such as carbides, nitrides, and carbons, are produced by high temperature chemical processes that often result in fiber lengths shorter than those of oxide fibers. Mechanical properties such as high elastic modulus and tensile strength of these materials make them excellent as reinforcements for plastics, glass, metals, and ceramics. Because these products oxidize at high temperatures, they are primarily suited for use in vacuum or inert atmospheres, but may also be used for relatively short exposures in oxidizing atmospheres above 1000°C. [Pg.53]

The above data represent the first from composites fabricated with fixed catalyst VGCF. A review of the data leads to the conclusion that the thermal and electrical properties of this type of carbon fiber are perhaps the most likely to be exploited in the short term. While mechanical properties of the composites are not as attractive as the thermal and electrical, it may be noted that no effort has... [Pg.155]

Fibrous fillers are now gaining more importance over particulate fillers due to the high performance in mechanical properties. The influence of fiber diameter on the tensile behavior of short glass fiber on polyimide was reported [95], At higher concentrations thick fibers seem to be more advantageous probably because of the... [Pg.833]

Fluoroelastomers Novikova et al. [32] reported unproved physico-mechanical properties of fluoro mbbers by reinforcement with chopped polyamide fibers. Other fiber reinforcements are covered by Grinblat et al. [33]. Watson and Francis [34] described the use of aramid (Kevlar) as short fiber reinforcement for vulcanized fluoroelastomer along with polychloroprene mbber and a co-polyester TPE in terms of improvement in the wear properties of the composites. Rubber diaphragms, made up of fluorosilicone mbbers, can be reinforced using aramid fiber in order to impart better mechanical properties to the composite, though surface modification of the fiber is needed to improve the adhesion between fluorosUicone mbber and the fiber [35]. Bhattacharya et al. [36] studied the crack growth resistance of fluoroelastomer vulcanizates filled with Kevlar fiber. [Pg.353]

Determination of mechanical properties like tensile strength, tear strength, modulus, and elongation at break are the most common methods adopted to determine the cured properties of short fiber-mbber composites. Murty and De [133] discussed the technical properties of short fiber-mbber composites whereas Abrate [8] reviewed the mechanism of short fiber reinforcement of mbber. Fiber concentration in the matrix plays an important role in the optimization of the required... [Pg.376]

Figures 20.13 and 20.14 describe the effect of dibutyltin dilaurate (DBTDL) on the tensile strength and tensile modulus for the 25/75 LCP/PEN blend fibers at draw ratios of 10 and 20 [13]. As expected, the addition of DBTDL slightly enhances the mechanical properties of the blends up to ca. 500 ppm of DBTDL. The optimum quantity of DBTDL seems to be about 500 ppm at a draw ratio of 20. However, the mechanical properties deteriorate when the concentration of catalyst exceeds this optimum level. From the previous relationships between the rheological properties and the mechanical properties, it can be discerned that the interfacial adhesion and the compatibility between the two phases, PEN and LCP, were enhanced. Hence, DBTDL can be used as a catalyst to achieve reactive compatibility in this blend system. This suggests the possibility of improving the interfacial adhesion between the immiscible polymer blends containing the LCP by reactive extrusion processing with a very short residence time. Figures 20.13 and 20.14 describe the effect of dibutyltin dilaurate (DBTDL) on the tensile strength and tensile modulus for the 25/75 LCP/PEN blend fibers at draw ratios of 10 and 20 [13]. As expected, the addition of DBTDL slightly enhances the mechanical properties of the blends up to ca. 500 ppm of DBTDL. The optimum quantity of DBTDL seems to be about 500 ppm at a draw ratio of 20. However, the mechanical properties deteriorate when the concentration of catalyst exceeds this optimum level. From the previous relationships between the rheological properties and the mechanical properties, it can be discerned that the interfacial adhesion and the compatibility between the two phases, PEN and LCP, were enhanced. Hence, DBTDL can be used as a catalyst to achieve reactive compatibility in this blend system. This suggests the possibility of improving the interfacial adhesion between the immiscible polymer blends containing the LCP by reactive extrusion processing with a very short residence time.
One typical example of carbon/carbon composite plates is that made by Oak Ridge National Laboratory (ORNL) in the United States [12]. The composite preform was fabricafed by a slurry-molding process from fhe mixed slurry befween short carbon fibers (graphite fibers were also added in some sample plates) and fhe phenolic resin. The mass rafio between fiber reinforcement and phenolic matrix is 4 3. The phenolic matrix improves the mechanical properties and dimensional stability of the plate. A subsequent vacuum molding process was utilized to fabricate composite plates and fluid fields with relatively high resolution (Figure 5.3, [11]). [Pg.317]

A.2.4 Discontinuous-Fiber-Reinforced Polymer-Matrix Composites Sheet Molding Compound. Of the parameters influencing the mechanical properties in short-fiber-reinforced polymer-matrix composites, fiber composition, matrix composition, fiber geometry, and manufacturing method will be elaborated upon here. [Pg.493]

In an ABS/metal composite, 10% iron powder has been admixed. The main reasons for choosing iron powder as short fiber fillers were its reasonably good mechanical and thermal properties as well as its capabilities of mixing and surface bonding with polymers (79). The shape of the iron particles was spherical. [Pg.235]


See other pages where Short fibers mechanical properties is mentioned: [Pg.293]    [Pg.71]    [Pg.782]    [Pg.449]    [Pg.335]    [Pg.589]    [Pg.4]    [Pg.278]    [Pg.182]    [Pg.353]    [Pg.354]    [Pg.356]    [Pg.357]    [Pg.364]    [Pg.367]    [Pg.371]    [Pg.372]    [Pg.373]    [Pg.373]    [Pg.377]    [Pg.379]    [Pg.383]    [Pg.388]    [Pg.389]    [Pg.206]    [Pg.212]    [Pg.216]    [Pg.554]    [Pg.248]    [Pg.93]    [Pg.239]    [Pg.241]    [Pg.247]    [Pg.433]    [Pg.106]    [Pg.495]    [Pg.29]    [Pg.449]    [Pg.380]    [Pg.513]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Fibers properties

Short glass fibers mechanical properties

© 2024 chempedia.info