Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shaping methods definition

This equation was firstly used by Bashforth and Adams [13] and represents the starting point for most of the drop shape methods developed so far. By definition, p is positive for captive... [Pg.443]

A solid, by definition, is a portion of matter that is rigid and resists stress. Although the surface of a solid must, in principle, be characterized by surface free energy, it is evident that the usual methods of capillarity are not very useful since they depend on measurements of equilibrium surface properties given by Laplace s equation (Eq. II-7). Since a solid deforms in an elastic manner, its shape will be determined more by its past history than by surface tension forces. [Pg.257]

Conventional implementations of MaxEnt method for charge density studies do not allow easy access to deformation maps a possible approach involves running a MaxEnt calculation on a set of data computed from a superposition of spherical atoms, and subtracting this map from qME [44], Recourse to a two-channel formalism, that redistributes positive- and negative-density scatterers, fitting a set of difference Fourier coefficients, has also been made [18], but there is no consensus on what the definition of entropy should be in a two-channel situation [18, 36,41] moreover, the shapes and number of positive and negative scatterers may need to differ in a way which is difficult to specify. [Pg.18]

Several methods of measurement of the thermal expansion have been developed as a function of the material, dimension and shape of the sample, temperature range and requested accuracy. The measurement of the linear expansion coefficient a = 1/L (AL/A7) of a sample is done by recording the length change AL (in a definite direction) due to a temperature variation AT. [Pg.304]

The methods described above are appropriate for simple ions, but not for the calculation of the activity coefficients of more complex compounds such as zwitterions, i.e., those which bear more than one functional group, have a low molecular weight, which is arbitrarily put at less than 500, and are approximately spherical in shape so that both the quasi-spherical assumption used in the van der Waals integral and the present definition of cavity area are satisfied. Many substances of interest... [Pg.108]

It is not necessary to restrict ourselves to bonds that are described by Morse potentials. We can regard eqn. (56) as a quadratic equation in x, use any form of the potential energy V(R) with the usual shape (i.e., a minimum, a repulsive barrier at short distances, and a monotonical increase at large distances), and determine x to get another definition of the bond order. This is called the unity bond index quadratic exponential potential (UBI QEP) method by Shustor-ovich and Sellers. ... [Pg.145]

The most definitive surface area measurements are probably those made by nitrogen adsorption using the BET theory. Neither the Brunauer, Emmett and Teller (BET) theory nor equation (11.5), used to calculate surface area from mercury intrusion data makes any assumptions regarding pore shape for surface area determinations. When these two methods are compared there is often surprisingly good agreement. When... [Pg.119]

Fig. 19, an unapodized spectrum [response function (sin nx)/nx = sinc(x)] is shown in trace (b). For such a spectrum there will be sidelobes and negative absorption if the natural linewidths are narrower than the full width of the sine-shaped response function. These are seen in Fig. 19, where the linewidth is three points and the response function width eight points. Here the phrase instrument response function may have a slightly different definition, but the meaning is clear. For such a response function, the direct deconvolution methods fall short. [Pg.212]

De Man (1983) has reviewed this property of fats. Consistency is defined as (1) an ill-defined and subjectively assessable characteristic of a material that depends on the complex stress-flow relation or as (2) the property by which a material resists change of shape. Spreadabil-ity, a term used in relation to consistency, is the force required to spread the fat with a knife. The definition is similar to that for hardness the resistance of the surface of a body to deformation. The most widely used simple compression test in North America is the cone penetrometer method (AOCS Method Cc 16-60, 1960). More sophisticated rheological procedures are also available. Efforts have been made to calibrate instrumental tests with sensory response. With the cone penetrometer method, penetration depth is used as a measure of firmness. Hayakawa and De Man (1982) studied the hardness of fractions obtained by crystallization of milk fat. Hardness values obtained with a constant speed penetrometer reflected trends in their TG composition and solid fat content. [Pg.205]

The Firestone flexometer method in D623 is not very specific. The standard test pieces are in the shape of a frustum of a rectangular pyramid but the use of any suitable shape is permitted when cut from products. The apparatus operates at 800 cycles/min and a range of compression loads and amplitudes of oscillation are possible, but no particular conditions are specified. The test piece is fatigued until a definite, but unspecified, decrease in the height of the test piece is reached, which is supposed to represent the onset of internal porosity. Parameters such as temperature rise and changes in compression are reported. [Pg.255]

There is a number of definitions of hardness. Even if we accept a general principle that it is equal to the ratio of load P to the surface of indentation S produced by that load, then, depending on the method used but above all on the shape of indenter, different hardness values will be obtained. Consequently, notwithstanding the identical units used (formerly KG mm-2... [Pg.4]

After an introductory chapter we review in Chap. 2 the classical definition of stress, strain and modulus and summarize the commonly used solutions of the equations of elasticity. In Chap. 3 we show how these classical solutions are applied to various test methods and comment on the problems imposed by specimen size, shape and alignment and also by the methods by which loads are applied. In Chap. 4 we discuss non-homogeneous materials and die theories relating to them, pressing die analogies with composites and the value of the concept of the representative volume element (RVE). Chapter 5 is devoted to a discussion of the RVE for crystalline and non-crystalline polymers and scale effects in testing. In Chap. 6 we discuss the methods so far available for calculating the elastic properties of polymers and the relevance of scale effects in this context. [Pg.67]


See other pages where Shaping methods definition is mentioned: [Pg.222]    [Pg.405]    [Pg.664]    [Pg.293]    [Pg.168]    [Pg.433]    [Pg.52]    [Pg.425]    [Pg.350]    [Pg.221]    [Pg.554]    [Pg.310]    [Pg.161]    [Pg.76]    [Pg.118]    [Pg.139]    [Pg.62]    [Pg.186]    [Pg.96]    [Pg.125]    [Pg.274]    [Pg.612]    [Pg.50]    [Pg.753]    [Pg.433]    [Pg.130]    [Pg.129]    [Pg.272]    [Pg.10]    [Pg.103]    [Pg.269]    [Pg.155]    [Pg.303]    [Pg.52]    [Pg.7]    [Pg.8]    [Pg.394]    [Pg.59]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Definitive method

Method definition

Shape, definition

Shaping methods

© 2024 chempedia.info