Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serotonin vesicular transporter

FIGURE 13-6 The substituted amphetamine fenfluramine inhibits the transport of 5-HT by both (A) the vesicular transporter, and (B) the serotonin transporter (SERT). Substituted amphetamines such as fenfluramine and MDMA stimulate the release of 5-HT from serotonergic terminals. These drugs block the vesicular transporter and disrupt the proton gradient across the vesicle membrane. The increase in intracellular 5-HT favors the release of 5-HT by the reverse action of the SERT. These drugs also act as substrates for the SERT so as to inhibit the transport of 5-HT into cells. [Pg.233]

It is now possible to image not only postsynaptic, but pre-synaptic and intrasynaptic neurotransmission (Fig. 58-5). Presynaptic sites, such as the dopamine transporter and the serotonin transporter the presynaptic dopamine vesicular transporter (VMAT-2) and the acetylcholine transporter extrasynaptic sites such as the enzymes which break down neurotransmitters, e.g. MAO A and MAO B with radioligands that bind to post or pre-synaptic sites, i.e. dopamine competing with radioligands such as UC raclopride (see Fig. 58-9) (PET (Fig. 58-10) can be measured under basal conditions or following drugs which either decrease (e.g. AMPT) or increase (e.g. intravenous amphetamine) intrasynaptic dopamine. [Pg.948]

MDR1, multidrug resistance protein-1 MRP1, multidrug resistance-associated protein 1 NET, norepinephrine transporter SERT, serotonin reuptake transporter VMAT, vesicular monoamine transporter. [Pg.23]

Uptake of amine NTs from the neuronal cytosol into synaptic vesicles is achieved by vesicular monoamine transporters (VMAT1 and VMAT2) that sequester dopamine, epinephrine, norepinephrine and serotonin. A similar vesicle transporter (VGAT) sequesters GABA and glycine and a vesicular transporter (VAChT) sequesters acetylcholine into synaptic vesicles. [Pg.233]

The neurotransmitter phenotype, (i.e., what type of neurotransmitter is stored and ultimately will be released from the synaptic bouton) is determined by the identity of the neurotransmitter transporter that resides on the synaptic vesicle membrane. Although some exceptions to the rule may exist all synaptic vesicles of a given neuron normally will express only one transporter type and thus will have a dehned neurotransmitter phenotype (this concept is enveloped in what is known as Dale s principle see also Reference 19). To date, four major vesicular transporter systems have been characterized that support synaptic vesicle uptake of glutamate (VGLUT 1-3), GABA and glycine (VGAT), acetylcholine (VAChT), and monoamines such as dopamine, norepinephrine, and serotonin (VMAT 1 and 2). Vesicles that store and release neuropeptides do not have specific transporters to load and concentrate the peptides but, instead, are formed with the peptides already contained within. [Pg.1251]

The pharmacology of amphetamine is considerably more complex. It does not only block monoamine reuptake, but also directly inhibits the vesicular monoamine transporter, causing an increase in cytosolic but not vesicular dopamine concentration. This may lead to reverse transport of the amines via the membrane-bound transporters. Further mechanisms of amphetamine action are direct MAO inhibition and indirect release of both dopamine and serotonin in the striatum. [Pg.1039]

VMATs are not inhibited by drugs such as cocaine, tricyclic antidqnessants and selective serotonin reuptake inhibitors that affect plasma membrane monoamine transport. Amphetamines have relatively selective effects on monoaminergic cells due to selective uptake by plasma membrane monoamine transporters, but their effect appears to be mediated by their ability as weak bases to reduce ApH, the driving force for vesicular monoamine transport that leads to efflux of the vesicular contents into the cytoplasm. [Pg.1282]

Schuldiner, S (1998) Vesicular neurotransmitter transporters. In Neurotransmitter Transporters Structure, Function, and Regulation (Ed. Reith, MEA), Humana Press, Totowa, NJ, pp. 215-240. Stanford, SC (1995) Central noradrenergic neurones and stress. Pharmac. Ther. 68 297-342. Stanford, SC (1999) SSRI-induced changes in catecholaminergic transmission. In Selective Serotonin Reuptake Inhibitors (SSRIs) Past, Present and Future (Ed. Stanford, SC), RG Landes Co., Austin, TX, pp. 147-170. [Pg.186]

Pharmacologic targeting of monoamine transporters. Commonly used drugs such as antidepressants, amphetamines, and cocaine target monoamine (norepinephrine, dopamine and serotonin) transporters with different potencies. A shows the mechanism of reuptake of norepinephrine (NE) back into the noradrenergic neuron via the norepinephrine transporter (NET), where a proportion is sequestered in presynaptic vesicles through the vesicular monoamine transporter (VMAT). and C show the effects of amphetamine and cocaine on these pathways. See text for details. [Pg.178]

HTxR, serotonin receptor CB1R, cannabinoid-1 DAT, dopamine transporter GABA, y-aminobutyric acid Kir3 channels, G protein-coupled inwardly rectifying potassium channels LSD, lysergic acid diethylamide i -OR, H-opioid receptor nAChR, nicotinic acetylcholine receptor NET, norepinephrine transporter NMDAR, N -methyl-D-aspartate receptor SERT, serotonin transporter VMAT, vesicular monoamine transporter indicates data not available. [Pg.715]

Amphetamine s primary effects (increased wakefulness, appetite suppression, and increased locomotor activity) are thought to be mediated by the release of norepinephrine from noradrenergic neurons in the CNS (36). However, research points to the role of plasma transport inhibition of dopamine, norepinephrine, and serotonin as well as inhibition of the vesicular monoamine transporter (138). Wisor et al. (139) summarize evidence that dopamine reuptake inhibition produces a greater alerting effect than norepinephrine transport blockade. [Pg.412]

The VMATs are also among the very few vesicular neurotransmitter transporters whose turnover number is known. At 29° C, they transport —5 molecules of serotonin per second and up to 20 molecules of dopamine (Peter et al., 1994). Since synaptic vesicles contain 5 to 20,000 molecules of transmitter and can recycle within at least 20 seconds (Ryan and Smith, 1995 Rizzoli et al., 2003), this rate has important implications for quantal size. At 5 molecules/second, the vesicle would contain only 100 molecules of transmitter after 20 seconds—if there were only one transporter per vesicle. Recent estimates suggest several transporters per vesicle (Takamori et al., 2006), but these might still not suffice to fill a rapidly cycling vesicle with monoamine unless the turnover was substantially higher at 37° C, where it is more difficult to measure transport accurately due to increased membrane leakiness. Indeed, the ability to determine the turnover of VMATs has been enabled by the availability of ligands to quantify the transporter and hence provide a denominator for measurements of transport. [Pg.84]

NE molecules are made inside into synaptic vesicles by the vesicular monoamine transporter (VMAT). This transport is an active, adenosine triphosphate (ATP)-requiring process. VMAT also transports DA, epinephrine and serotonin (5-HT). These hormones and transmitters are so-called monoamines (MO). Certain drugs, such as reserpine and tetrabenazine, inhibit the VMAT and suppress vesicular MO storage (Reinhard et al., 1988 Russo et al., 1994). [Pg.362]

Tetrabenazine inhibits the vesicular monoamine transporter, which results in a depletion of stores of norepinephrine (and to a lesser extent dopamine and serotonin) in the central nervous system. [Pg.154]

Vesicular accumulation of catecholamines and of serotonin is inhibited by reserpine (Figure 10.14a). While reserpine initially was believed to inhibit the -ATP ase that generates and maintains a high proton concentration inside the vesicles , it is now clear that reserpine instead binds to the vesicular transmitter transporter that makes use of this proton gradient to move the transmitter uphill its own gradient into the vesicle (Figure 10.14b). The number of protons released for the import of each transmitter molecule is not known with certainty but is likely greater than 1. [Pg.96]

Vesicular monoamine transporter type 2 (VMAT2) is located on the membrane of the intracellular storage vesicle, and it transports all biogenic amines (e.g. serotonin, norepinephrine, dopamine, acetylcholine, histamine) with practically equivalent affinity. Regional localization of VMAT2 is consistent with the known monoamine nerve terminal density it is highest in the striatum, lateral septum, substantia nigra pars compacta, raphe nucleus, and locus ceruleus. Lower density is evident in the cerebral cortex and in the cerebellum. [Pg.13]

In 955yBernard Brodie and colleagues at the NIH discovered that the drug, reserpine, results in a decrease in serotonin in the brain. Reserpine was isolated in 1952 from the dried root of Rauwolfia Serpentina (Indian snakeroot), and introduced into clinical medicine inl954. Reserpine blocks the uptake and storage of NE and DA into synaptic vesicles by inhibiting the vesicular monoamine transporters. [Pg.60]

Reserpine blocks the uptake (and storage) of norepinephrine and dopamine into synaptic vesicles by inhibiting the vesicular monoamine transporters. Brodie and colleagues found that reserpine also depleted serotonin from body tissues, including the brain. Their studies included patients with carcinoid tumors that produce serotonin, after there are metastases to the liver. [Pg.218]


See other pages where Serotonin vesicular transporter is mentioned: [Pg.1170]    [Pg.234]    [Pg.78]    [Pg.1170]    [Pg.499]    [Pg.363]    [Pg.105]    [Pg.564]    [Pg.1173]    [Pg.5]    [Pg.231]    [Pg.725]    [Pg.537]    [Pg.79]    [Pg.31]    [Pg.40]    [Pg.182]    [Pg.100]    [Pg.1173]    [Pg.267]    [Pg.523]    [Pg.524]    [Pg.1034]    [Pg.1035]    [Pg.89]    [Pg.86]    [Pg.293]    [Pg.89]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Serotonin transport

Serotonin transporter

Serotonin transporter transporters

Vesicular

Vesicular transport

© 2024 chempedia.info